Purpose: Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) have been demonstrated to possess great potential in preclinical models. An efficient biomanufacturing platform is necessary for scale up production for clinical therapeutic applications. The aim of this study is to investigate the potential differences in neuro-regenerative properties of MSC-derived EVs generated in 2D versus 3D culture systems.
View Article and Find Full Text PDFPurpose: We have previously reported that VEGF-B is more potent than VEGF-A in mediating corneal nerve growth in vitro and in vivo, and this stimulation of nerve growth appears to be different from stimulation of angiogenesis by these same ligands, at least in part due to differences in VEGF receptor activation. VEGF signaling may be modulated by a number of factors including receptor number or the formation of receptor hetero- vs. homodimers.
View Article and Find Full Text PDFStroke is a leading cause of death and disability worldwide. Inflammation and microvascular dysfunction have been associated with brain injury and long-term disability after both ischemic and hemorrhagic stroke. Recent studies have suggested a potential role of extracellular vesicles (EVs) as a link underlying these pathogenic processes.
View Article and Find Full Text PDFPurpose: The current paradigm for therapy of recalcitrant ocular surface diseases (OSD) consists of a sequential, step-up treatment approach. A combinatorial topical therapy (anti-inflammatory/immunosuppressive [steroid] with immunomodulatory [pooled human immune globulin] and tear substitute [serum]) that simultaneously targets several immunological pathways may be more efficacious. This report evaluates if the combinatorial therapy resulted in clinical benefit in patients with recalcitrant OSD.
View Article and Find Full Text PDFThe protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs.
View Article and Find Full Text PDFBackground: Delayed cerebral vasospasm is a feared complication of aneurysmal subarachnoid hemorrhage (SAH).
Objective: To investigate the relationship of systemic inflammation, measured using the systemic immune-inflammation (SII) index, with delayed angiographic or sonographic vasospasm. We hypothesize that early elevations in SII index serve as an independent predictor of vasospasm.
Background/objective: Subarachnoid hemorrhage (SAH) is a devastating neurological injury, further complicated by few available methods to objectively predict outcomes. With the recent shift in focus to neuroinflammation as a potential cause of adverse outcomes following SAH, we investigated the inflammasome-derived enzyme, caspase-1, as a potential biomarker for poor functional outcome.
Methods: SAH patients were recruited from a regional stroke referral center.
Network oscillations across and within brain areas are critical for learning and performance of memory tasks. While a large amount of work has focused on the generation of neural oscillations, their effect on neuronal populations' spiking activity and information encoding is less known. Here, we use computational modeling to demonstrate that a shift in resonance responses can interact with oscillating input to ensure that networks of neurons properly encode new information represented in external inputs to the weights of recurrent synaptic connections.
View Article and Find Full Text PDF