Publications by authors named "Eitan A Friedman"

Electronic health records (EHRs) linked with biobanks have been recognized as valuable data sources for pharmacogenomic studies, which require identification of patients with certain adverse drug reactions (ADRs) from a large population. Since manual chart review is costly and time-consuming, automatic methods to accurately identify patients with ADRs have been called for. In this study, we developed and compared different informatics approaches to identify ADRs from EHRs, using clopidogrel-induced bleeding as our case study.

View Article and Find Full Text PDF

Background: Cardiac amyloidosis is an infiltrative cardiomyopathy that is challenging to diagnose. We hypothesized that the novel biomarkers hepatocyte growth factor (HGF), galectin-3 (GAL-3), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) would be elevated in cardiac amyloidosis and may be able to discriminate from non-cardiac systemic amyloidosis or other cardiomyopathies with similar clinical or morphologic characteristics.

Methods: Patients were selected from the Vanderbilt Main Heart Registry according to the following groups: (1) amyloid light-chain (AL) cardiac amyloidosis (n = 26); (2) transthyretin (ATTR) cardiac amyloidosis (n = 7); (3) left ventricular hypertrophy (LVH) (n = 45); (4) systolic heart failure (n = 42); and (5) non-cardiac systemic amyloidosis (n = 7).

View Article and Find Full Text PDF

Abnormal platelet reactivity is associated with recurrent ischemia and bleeding following percutaneous coronary intervention (PCI). Protease-activated receptor-1 (PAR1), encoded by F2R, is a high affinity thrombin receptor on platelets and the target of the antiplatelet drug vorapaxar. The intronic single nucleotide polymorphism F2R IVS-14 A/T affects PAR1 receptor density and function.

View Article and Find Full Text PDF

The platelet thrombus is the major pathologic entity in acute coronary syndromes, and antiplatelet agents are a mainstay of therapy. However, individual patient responsiveness to current antiplatelet drugs is variable, and all drugs carry a risk of bleeding. An understanding of the complex role of Prostaglandin E2 (PGE2) in regulating thrombosis offers opportunities for the development of novel individualized antiplatelet treatment.

View Article and Find Full Text PDF

Purpose: There is a large interindividual variability in dexmedetomidine dose requirements for sedation of patients in intensive care units (ICU). Cytochrome P450 2A6 (CYP2A6) mediates an important route of dexmedetomidine metabolism, and genetic variation in CYP2A6 affects the clearance of other substrate drugs. We examined whether CYP2A6 genotypes affect dexmedetomidine disposition.

View Article and Find Full Text PDF

Objective: To examine the hypothesis that genetic variation in enzymes and transporters associated with synthesis, storage, release, and metabolism of catecholamines contributes to the interindividual variability in plasma catecholamine concentrations at rest and after exercise.

Methods: We measured plasma norepinephrine (NE) and epinephrine concentrations at rest and after a standardized exercise protocol in 165 healthy individuals (60% White, 40% African-American) and examined 29 functional or common variants in 14 genes involved in synthesis, transport, or metabolism of catecholamines. We examined the relationship between genotypes and NE concentrations at rest and the increase after exercise (ΔNE) by multiple linear regression with adjustment for covariates [age, race, sex, BMI, fitness, and resting NE (for ΔNE)].

View Article and Find Full Text PDF

Background: α(2A)-Adrenoceptors (α(2A)-ARs) have important roles in sympathetic cardiovascular regulation. Variants of ADRA2A affect gene transcription and expression and are associated with insulin release and risk for type 2 diabetes. We examined whether ADRA2A variants are also associated with cardiovascular responses to the selective α(2)-AR-agonist dexmedetomidine.

View Article and Find Full Text PDF

Aims: A common, functionally significant polymorphism in GRK5 (Gln41Leu) encodes a gain-of-function enzyme that enhances desensitization of the beta(1)-adrenergic receptor. GRK5 Leu41 has been postulated to confer endogenous 'genetic beta-blockade' and contribute to an attenuated response to beta-blockers in black subjects. The effects of this GRK5 variant on sensitivity to a beta-blocker have not been studied in humans.

View Article and Find Full Text PDF

Objectives: Cold-induced vasoconstriction is mediated in part by selective enhancement of local alpha(2C)-adrenoceptor (alpha(2C)-AR) activity. A common insertion-deletion variant in the alpha(2C)-AR gene (ADRA2C del322-325) results in an approximately 85% reduction of agonist-mediated function in vitro. We tested the hypothesis that individuals with the ADRA2C del322-325 variant have attenuated vasoconstriction in response to cold.

View Article and Find Full Text PDF

Background: The mechanisms underlying interindividual variability in pain perception and cognitive responses are undefined but highly heritable. alpha(2C)- and alpha(2A)-adrenergic receptors regulate noradrenergic activity and are important mediators of pain perception and analgesia. We hypothesized that common genetic variants in these genes, particularly the ADRA2C 322-325 deletion variant, affect pain perception or cognitive responses.

View Article and Find Full Text PDF

Objectives: Black patients may be less responsive to beta-blockers than whites. Genetic variants in the beta1-adrenergic receptor (beta1-AR) associated with lesser response to beta-blockers are more common in blacks than in whites. The purpose of this study was to determine whether ethnic differences in response to beta-blockade can be explained by differing distributions of functional genetic variants in the beta1-AR.

View Article and Find Full Text PDF

Objectives: Cardiovascular responses to stressors are regulated by sympathetic activity, increased in black Americans, and associated with future cardiovascular morbidity. Our aim was to determine whether two functional variants in genes regulating sympathetic activity, a deletion in the alpha2C-adrenergic receptor (ADRA2C del322-325) and a G-protein beta3-subunit variant (GNB3 G825T), affect cardiovascular responses to physiologic stressors and contribute to their ethnic differences.

Methods: We measured heart rate and blood pressure responses to a cold pressor test (CPT) in 79 healthy participants (40 blacks, 39 whites), aged 25.

View Article and Find Full Text PDF

The alpha(2)-adrenoceptor agonist clonidine reduces blood pressure more effectively in White than Black Americans despite similar degrees of sympatholysis. Functional genetic variation in receptor signaling mechanisms, for example in the beta 3 G-protein subunit (GNB3 C825T) and in the alpha(2C)-adrenoceptor subtype (ADRA2C del322-325), may affect drug responses. We examined the hypothesis that there are ethnic differences in the responses to the highly selective alpha(2)-agonist, dexmedetomidine, and that these genetic variants contribute to interindividual variability in drug responses.

View Article and Find Full Text PDF

Background: The alpha2C-adrenergic receptor plays an important role in the regulation of the sympathetic nervous system and, therefore, blood pressure and heart rate. A deletion polymorphism in its gene (ADRA2C del322-325), ten times more common in black than white Americans, has been associated with a loss of function in vitro and, under controlled study conditions, raised blood pressure and catecholamine secretion. We therefore examined the hypothesis that the ADRA2C deletion variant would alter sympathetic activity and contribute to ethnic differences in blood pressure.

View Article and Find Full Text PDF