Publications by authors named "Eisuke Nozawa"

Prostaglandins (PGs) are important lipid mediators of numerous physiologic and pathophysiologic processes in the kidney. PGE, the most abundant renal PG, plays a major role in renal physiology, including renin release and glomerular hemodynamics. We investigated the renoprotective properties of the novel PGE EP4 receptor-selective antagonist ASP7657 in 5/6 nephrectomized rats, a chronic kidney disease (CKD) model.

View Article and Find Full Text PDF

We determined the pharmacologic profile of ASP7657, trans-4-[({[1-(quinolin-2-ylmethyl)-5-(trifluoromethyl)-1H-indol-7 yl] carbonyl} amino) methyl] cyclohexanecarboxylic acid methanesulfonate (1:1), a newly synthesized selective E-type prostaglandin (EP)4 receptor antagonist using several in vitro and in vivo experiments. ASP7657 exhibited high affinity for rat and human EP4 receptors, with K values of 6.02 nM and 2.

View Article and Find Full Text PDF

A novel series of trans-N-aryl-2,5-dimethylpiperazine-1-carboxamide derivatives was synthesized and their androgen receptor (AR) antagonist activities and in vivo antiandrogenic effects were evaluated. Pharmacological assays indicated that compound 33 was a potent AR antagonist, and subsequent optical resolution provided (+)-(2R,5S)-4-[4-cyano-3-(trifluoromethyl)phenyl]-2,5-dimethyl-N-[6-(trifluoromethyl)pyridin-3-yl]piperazine-1-carboxamide (33a, YM580) which exhibited the most potent antiandrogenic activity. Unlike bicalutamide, compound 33a decreased the weight of rat ventral prostate in a dose-dependent manner (ED(50) = 2.

View Article and Find Full Text PDF

A novel series of N-arylpiperazine-1-carboxamide derivatives was synthesized and their androgen receptor (AR) antagonist activities and in vivo antiandrogenic properties were evaluated. Reporter assays indicated that trans-2,5-dimethylpiperazine derivatives are potent AR antagonists, and in this series trans-N-4-[4-cyano-3-(trifluoromethyl)phenyl]-N-(2,4-difluorophenyl)-2,5-dimethylpiperazine-1-carboxamide (18 g, YM-175735) exhibited the most potent antiandrogenic activity. Compared to bicalutamide, YM-175735 is an approximately 4-fold stronger AR antagonist and has slightly increased antiandrogenic activity, suggesting that YM-175735 may be useful in the treatment of prostate cancer.

View Article and Find Full Text PDF