Publications by authors named "Eisenbeis V"

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia.

View Article and Find Full Text PDF

Technical challenges have to date prevented a complete profiling of the levels of -inositol phosphates (InsPs) and pyrophosphates (PP-InsPs) in mammalian tissues. Here, we have deployed capillary electrophoresis mass spectrometry to identify and record the levels of InsPs and PP-InsPs in several tissues obtained from wild type mice and a newly created PPIP5K2 knockout strain. We observe that the mouse colon harbours unusually high levels of InsPs and PP-InsPs.

View Article and Find Full Text PDF

Condensed phosphates may exist as linear, cyclic or branched structures. Due to their important role in nature, linear polyphosphates have been well studied. In contrast, branched phosphates (ultraphosphates) remain largely uncharacterised, because they were already described in 1950 as exceedingly unstable in the presence of water, epitomized in the antibranching-rule.

View Article and Find Full Text PDF

Inositol pyrophosphates (PP-InsPs) are an important group of intracellular signaling molecules. Derived from inositol phosphates (InsPs), these molecules feature the presence of at least one energetic pyrophosphate moiety on the myo-inositol ring. They exist ubiquitously in eukaryotes and operate as metabolic messengers surveying phosphate homeostasis, insulin sensitivity, and cellular energy charge.

View Article and Find Full Text PDF

The analysis of myo-inositol phosphates (InsPs) and myo-inositol pyrophosphates (PP-InsPs) is a daunting challenge due to the large number of possible isomers, the absence of a chromophore, the high charge density, the low abundance, and the instability of the esters and anhydrides. Given their importance in biology, an analytical approach to follow and understand this complex signaling hub is desirable. Here, capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry (ESI-MS) is implemented to analyze complex mixtures of InsPs and PP-InsPs with high sensitivity.

View Article and Find Full Text PDF

T cell-independent (TI) B cell response is critical for the early protection against pathogen invasion. The regulation and activation of Bruton's tyrosine kinase (Btk) is known as a pivotal step of B cell antigen receptor (BCR) signaling in TI humoral immunity, as observed in patients with X-linked agammaglobulinemia (XLA) experiencing a high incidence of encapsulated bacterial infections. However, key questions remain as to whether a well-established canonical BCR signaling pathway is sufficient to regulate the activity of Btk.

View Article and Find Full Text PDF

Among many cellular functions, inositol pyrophosphates (PP-InsPs) are metabolic messengers involved in the regulation of glucose uptake, insulin sensitivity, and weight gain. However, their mechanisms of action are still poorly understood. So far, the influence of PP-InsPs on cellular metabolism has been studied by overexpression or knockout/inhibition of relevant metabolizing kinases (IP6Ks, PPIP5Ks).

View Article and Find Full Text PDF

A tunable chemoenzymatic strategy provides access to the entire class of magic spot nucleotides and modified analogues. The approach combines chemoselective bisphosphorylations using phosphoramidites with regioselective ribonuclease T2 cyclo-phosphate hydrolysis, leading to flexible and simple gram-scale operations.

View Article and Find Full Text PDF