Highly crystalline BiFeO(BFO), BiSmFeO(Sm-BFO) and BiFeCoO(Co-BFO) nanoparticles (NPs) were utilized as potential magnetic hyperthermia agents at two different frequencies in the radiofrequency (RF) range, and the effect of Smand Coion doping on the physical properties of the material was examined. The thermal behaviour of the as-prepared powders disclosed that the crystallization temperature of the powders is affected by the incorporation of the dopants into the BFO lattice and the Curie transition temperature is decreased upon doping. Vibrational analysis confirmed the formation of the R3c phase in all compounds through the characteristic FT-IR absorbance bands assigned to O-Fe-O bending vibration and Fe-O stretching of the octahedral FeOgroup in the perovskite, as well as through Raman spectroscopy.
View Article and Find Full Text PDFMagnetic particle hyperthermia (MPH) is a promising method for cancer treatment using magnetic nanoparticles (MNPs), which are subjected to an alternating magnetic field for local heating to the therapeutic range of 41-45 °C. In this window, the malignant regions (i.e.
View Article and Find Full Text PDFTremendous attention has been given to hydrogels due to their mechanical and physical properties. Hydrogels are promising biomaterials due to their high biocompatibility. Magnetic hydrogels, which are based on hydrogel incorporated magnetic nanoparticles, have been proposed in biomedical applications.
View Article and Find Full Text PDFThe challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT).
View Article and Find Full Text PDFIn magnetic particle hyperthermia, a promising least-invasive cancer treatment, malignant regions in proximity with magnetic nanoparticles undergo heat stress, while unavoidably surrounding healthy tissues may also suffer from heat either directly or indirectly by the induced eddy currents, due to the developed electric fields as well. Here, we propose a facile upgrade of a typical magnetic particle hyperthermia protocol, to selectively mitigate eddy currents' heating without compromising the beneficial role of heating in malignant regions. The key idea is to apply the external magnetic field intermittently (in an ON/OFF pulse mode), instead of the continuous field mode typically applied.
View Article and Find Full Text PDFMagnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo.
View Article and Find Full Text PDFMagnetic particle hyperthermia is a promising cancer therapy, but a typical constraint of its applicability is localizing heat solely to malignant regions sparing healthy surrounding tissues. By simultaneous application of a constant magnetic field together with the hyperthermia inducing alternating magnetic field, heating focus may be confined to smaller regions in a tunable manner. The main objective of this work is to evaluate the focusing parameters, by adequate selection of magnetic nanoparticles and field conditions, and explore spatially focused magnetic particle hyperthermia efficiency in tissue phantom systems comprising agarose gel and magnetic nanoparticles.
View Article and Find Full Text PDFSize-selected FeO-Au hybrid nanoparticles with diameters of 6-44 nm (FeO) and 3-11 nm (Au) were prepared by high temperature, wet chemical synthesis. High-quality FeO nanocrystals with bulk-like magnetic behavior were obtained as confirmed by the presence of the Verwey transition. The 25 nm diameter FeO-Au hybrid nanomaterial sample (in aqueous and agarose phantom systems) showed the best characteristics for application as contrast agents in magnetic resonance imaging and for local heating using magnetic particle hyperthermia.
View Article and Find Full Text PDF