Phenotypic plasticity enables organisms to express a phenotype that is optimal in their current environment. The ability of organisms to obtain the optimum phenotype is determined by their (i) capacity for plasticity, which facilitates phenotypic adjustment corresponding to the amplitude of environmental change but also their (ii) rate of plasticity, because this determines if the expressed phenotype lags behind changes in the optimum. How the rate of- and capacity for plasticity have co-evolved will thus be critical for the resilience of organisms under different patterns of environmental change.
View Article and Find Full Text PDFPsychiatric drugs are considered among the emerging contaminants of concern in ecological risk assessment, due to their potential to disrupt homeostasis in aquatic organisms. Bupropion is an antidepressant that acts by selective reuptake inhibition of norepinephrine and dopamine. Little is known about this compound's effects on aquatic organisms, despite being detected in significant concentrations in both water and biota close to waste-water treatment plants and densely populated areas.
View Article and Find Full Text PDFWhen comparing somatic growth thermal performance curves (TPCs), higher somatic growth across experimental temperatures is often observed for populations originating from colder environments. Such countergradient variation has been suggested to represent adaptation to seasonality, or shorter favourable seasons in colder climates. Alternatively, populations from cold climates may outgrow those from warmer climates at low temperature, and vice versa at high temperature, representing adaptation to temperature.
View Article and Find Full Text PDFQuantifying uncertainty associated with our models is the only way we can express how much we know about any phenomenon. Incomplete consideration of model-based uncertainties can lead to overstated conclusions with real-world impacts in diverse spheres, including conservation, epidemiology, climate science, and policy. Despite these potentially damaging consequences, we still know little about how different fields quantify and report uncertainty.
View Article and Find Full Text PDFAn individual's fitness cost associated with environmental change likely depends on the rate of adaptive phenotypic plasticity, and yet our understanding of plasticity rates in an ecological and evolutionary context remains limited. We provide the first quantitative synthesis of existing plasticity rate data, focusing on acclimation of temperature tolerance in ectothermic animals, where we demonstrate applicability of a recently proposed analytical approach. The analyses reveal considerable variation in plasticity rates of this trait among species, with half-times (how long it takes for the initial deviation from the acclimated phenotype to be reduced by 50% when individuals are shifted to a new environment) ranging from 3.
View Article and Find Full Text PDFInvasive predatory species are frequently observed to cause evolutionary responses in prey phenotypes, which in turn may lead to evolutionary shifts in the population dynamics of prey. Research has provided a link between rates of predation and the evolution of prey population growth in the lab, but studies from natural populations are rare. Here, we tested for evolutionary changes in population dynamics parameters of zooplankton following invasion by the predator into Lake Kegonsa, Wisconsin, US.
View Article and Find Full Text PDFIt is well-documented that perturbation of the gut bacterial community can influence the reproductive rates of the host. Less is known about how natural ecological processes can change the bacterial composition in the gut and how such changes influence the reproductive rate of the host. Here, we provide novel experimental insights into such processes using the clonally reproducing water flea, Daphnia magna.
View Article and Find Full Text PDFMetabolic rate is a trait that may evolve in response to the direct and indirect effects of predator-induced mortality. Predators may indirectly alter selection by lowering prey densities and increasing resource availability or by intensifying resource limitation through changes in prey behavior (e.g.
View Article and Find Full Text PDFWith rapid and less predictable environmental change emerging as the 'new norm', understanding how individuals tolerate environmental stress via plastic, often reversible changes to the phenotype (i.e., reversible phenotypic plasticity, RPP), remains a key issue in ecology.
View Article and Find Full Text PDFThe neurotransmitter dopamine has been shown to play an important role in modulating behavioral, morphological, and life history responses to food abundance. However, costs of expressing high dopamine levels remain poorly studied and are essential for understanding the evolution of the dopamine system. Negative maternal effects on offspring size from enhanced maternal dopamine levels have previously been documented in .
View Article and Find Full Text PDFIn ectotherms, adult body size commonly declines with increasing environmental temperature, a pattern known as the temperature-size rule. One influential hypothesis explaining this observation is that the challenge of obtaining sufficient oxygen to support metabolism becomes greater with increasing body size, and more so at high temperatures. Yet, previous models based on this hypothesis do not account for phenotypic plasticity in the physiology of organisms that counteracts oxygen limitation at high temperature.
View Article and Find Full Text PDFToxicity studies on freshwater organisms are commonly conducted by quantifying effects on asexual (clonal) reproductive rates in Daphnia, whereas studies of effects on sexual reproductive rates remain relatively rare. Sexual reproduction in Daphnia and the associated production of resting eggs allows them to survive unfavorable environmental conditions and is thus a crucial component of their long-term fitness. It also maintains genetic diversity within Daphnia populations and hence their potential for adaptation to new environmental conditions.
View Article and Find Full Text PDFExpression of adaptive reaction norms of life-history traits to spatio-temporal variation in food availability is crucial for individual fitness. Yet little is known about the neural signalling mechanisms underlying these reaction norms. Previous studies suggest a role for the dopamine system in regulating behavioural and morphological responses to food across a wide range of taxa.
View Article and Find Full Text PDFMeaningful comparison of variation in quantitative trait requires controlling for both the dimension of the varying entity and the dimension of the factor generating variation. Although the coefficient of variation (CV; standard deviation divided by the mean) is often used to measure and compare variation of quantitative traits, it only accounts for the dimension of the former, and its use for comparing variation may sometimes be inappropriate. Here, we discuss the use of the CV to compare measures of evolvability and phenotypic plasticity, two variational properties of quantitative traits.
View Article and Find Full Text PDFWidespread declines in the body size of aquatic ectotherms have been attributed to the poorer ability of older, larger individuals to tolerate high temperature. Here, using the thermal death time curve framework, we investigate the relationship between temperature tolerance and size/age by measuring the change in heat tolerance of the keystone zooplankton species across a range of temperature intensities (and hence exposures of varying duration) among individuals that differed up to 3-fold in size and thus varied in age also. Across the gradient of exposure temperatures, younger, smaller individuals were more tolerant than older, larger individuals.
View Article and Find Full Text PDFExperiments examining mercury (Hg) toxicity in Daphnia are usually conducted in highly standardized conditions that prevent the formation of biofilm. Although such standardization has many advantages, extrapolation of results to natural conditions and inference of ecological effects is challenging. This is especially true since biofilms can accumulate metals/metalloids and play a key role in their transfer to higher trophic level organisms.
View Article and Find Full Text PDFWhen a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the process of acclimation. While acclimation has been studied for more than half a century, global environmental change has stimulated renewed interest in quantifying variation in the rate and capacity with which this process occurs, particularly among ectothermic organisms.
View Article and Find Full Text PDFMetabolic rate (MR) often scales with body mass (BM) following a power function of the form MR=BM , where log() is the allometric intercept and is the allometric exponent (i.e. slope on a log-log scale).
View Article and Find Full Text PDFThe capacity of organisms to acclimate will influence their ability to cope with ongoing global changes in thermal regimes. Here we highlight methodological issues associated with recent attempts to quantify variation in acclimation capacity among taxa and environments, and describe how these may introduce bias to conclusions. We then propose a measure of thermal acclimation capacity that more directly quantifies the process of acclimation.
View Article and Find Full Text PDFEscaped farmed Atlantic salmon interbreed with wild Atlantic salmon, leaving offspring that often have lower success in nature than pure wild salmon. On top of this, presence of farmed salmon descendants can impair production of wild-type recruits. We hypothesize that both these effects connect with farmed salmon having acquired higher standard metabolic rates (SMR, the energetic cost of self-maintenance) during domestication.
View Article and Find Full Text PDFWe present a method for automating the measurement of upper thermal limits in small aquatic organisms. Upper thermal limits are frequently defined by the cessation of movement at high temperature, with measurement being performed by manual observation. Consequently, estimates of upper thermal limits may be subject to error and bias, both within and among observers.
View Article and Find Full Text PDFTheoretical models on the evolution of phenotypic plasticity predict a zone of canalization where reaction norms cross, and genetic variation is minimized in the environment a population most frequently encounter. Empirical tests of this prediction are largely missing, in particular for life-history traits. We addressed this prediction by quantifying thermal reaction norms of three life-history traits (somatic growth rate, age and size at maturation) of a Norwegian population of Daphnia magna and testing for the occurrence of an intermediate temperature (T ) at which genetic variance in the traits is minimized.
View Article and Find Full Text PDFDiversified bet-hedging (DBH) by production of within-genotype phenotypic variance may evolve to maximize fitness in stochastic environments. Bet-hedging is generally associated with parental effects, but phenotypic variation may also develop throughout life via developmental instability (DI). This opens for the possibility of a within-generation mechanism creating DBH during the lifetime of individuals.
View Article and Find Full Text PDFEnvironmental change may cause phenotypic changes that are inherited across generations through transgenerational plasticity (TGP). If TGP is adaptive, offspring fitness increases with an increasing match between parent and offspring environment. Here we test for adaptive TGP in somatic growth and metabolic rate in response to temperature in the clonal zooplankton Daphnia pulex Animals of the first focal generation experienced thermal transgenerational 'mismatch' (parental and offspring temperatures differed), whereas conditions of the next two generations matched the (grand)maternal thermal conditions.
View Article and Find Full Text PDFThere is increasing evidence that females can somehow improve their offspring fitness by mating with multiple males, but we understand little about the exact stage(s) at which such benefits are gained. Here, we measure whether offspring fitness is influenced by mechanisms operating solely between sperm and egg. Using externally fertilizing and polyandrous Atlantic salmon (Salmo salar), we employed split-clutch and split-ejaculate in vitro fertilization experiments to generate offspring using designs that either denied or applied opportunities for sperm competition and cryptic female choice.
View Article and Find Full Text PDF