Publications by authors named "Eine J"

In this study we have compared the mechanical stability of custom (n=8) and anatomical (n=8) uncemented femoral components, following insertion into human cadaveric femurs, during simulated single leg stance and stair climbing. In the custom group two specimens were excluded from the study due to detachment of the greater trochanter during cyclical loading. As a consequence of their mechanical behaviour both types of stems could be divided into subgroups of "unstable" and "stable" implants.

View Article and Find Full Text PDF

We have compared the changes in the pattern of the principal strains in the proximal femur after insertion of eight uncemented anatomical stems and eight customised stems in human cadaver femora. During testing we aimed to reproduce the physiological loads on the proximal femur and to simulate single-leg stance and stair-climbing. The strains in the intact femora were measured and there were no significant differences in principal tensile and compressive strains in the left and right femora of each pair.

View Article and Find Full Text PDF

Ct and advanced computer-aided design techniques offer the means for designing customised femoral stems. Our aim was to determine the Hounsfield (HU) value of the bone at the corticocancellous interface, as part of the criteria for the design algorithm. We obtained transverse CT images from eight human cadaver femora.

View Article and Find Full Text PDF

Two conflicting theories exist concerning the stress pattern for the proximal lateral aspect of the human femur. According to the classic theory of Pauwels, a bending moment on the femur leads to compression medially and to tension laterally. The alternative theory is that muscle forces contribute to a moment-free loading of the femur, with both the medial and lateral cortices subjected to compression.

View Article and Find Full Text PDF

Both computed tomography (CT) and ultrasonography have been used successfully to estimate the femoral anteversion (AV) angle. In this study, AV angles in 20 human adult femurs were determined by ultrasonography and CT and the measurements compared. On CT the real AV angle was measured as the angle between the head-neck centreline and the posterior condylar plane.

View Article and Find Full Text PDF