We utilize time-domain Terahertz (THz) reflectivity measurements for characterizing the surface conductivity of Polyethylene-terephthalate coated with nanowire (NW) films to form novel transparent electrodes (TE). We find good correspondence between the film conductivity and the THz-field reflectivity that provide uniquely desirable means for non-destructive, contactless conductivity measurements of large area NW-based-TEs. We demonstrate the robustness of THz reflectivity measurements to deviations invoked on NW film composition and film uniformity.
View Article and Find Full Text PDFThis article describes a unique combination of inkjet printing of functional materials with an intricate self-assembly process. Gold-silver nanowire (NW) mesh films were produced by a sequential deposition process, in which small metal seed nanoparticle film was deposited at desired areas by inkjet printing, followed by coating with a thin film of NW growth solution. Two different types of NW growth solutions were used: the first, based on benzylhexadecyldimethylammonium chloride, exhibited a bulk solution growth mode and was thus suitable for coverage of large uniform areas.
View Article and Find Full Text PDFEnzyme-responsive polymeric micelles have great potential as drug delivery systems due to the high selectivity and overexpression of disease-associated enzymes, which could be utilized to trigger the release of active drugs only at the target site. We previously demonstrated that enzymatic degradation rates of amphiphilic PEG-dendron hybrids could be precisely tuned by gradually increasing the hydrophobic to hydrophilic ratio. However, with the increase in hydrophobicity, the micelles rapidly became too stable and could not be degraded, as often encountered for many other amphiphilic assemblies.
View Article and Find Full Text PDFSelf-assembled nanostructures and their stimuli-responsive degradation have been recently explored to meet the increasing need for advanced biocompatible and biodegradable materials for various biomedical applications. Incorporation of enzymes as triggers that can stimulate the degradation and disassembly of polymeric assemblies may be highly advantageous owing to their high selectivity and natural abundance in all living organisms. One of the key factors to consider when designing enzyme-responsive polymers is the ability to fine-tune the sensitivity of the platform toward its target enzyme in order to control the disassembly rate.
View Article and Find Full Text PDFStudying the enzymatic degradation of synthetic polymers is crucial for the design of suitable materials for biomedical applications ranging from advanced drug delivery systems to tissue engineering. One of the key parameters that governs enzymatic activity is the limited accessibility of the enzyme to its substrates that may be collapsed inside hydrophobic domains. PEG-dendron amphiphiles can serve as powerful tools for the study of enzymatic hydrolysis of polymeric amphiphiles due to the monodispersity and symmetry of the hydrophobic dendritic block, which significantly simplifies kinetic analyses.
View Article and Find Full Text PDFThe design of stable polymeric micelles that can respond to specific stimuli is crucial for the development of smart micellar nanocarriers that can release their active cargo selectively at the target site, thus diminishing the therapeutic limitations due to non-selective damage to healthy tissues. Here we report the design and synthesis of photo- and enzyme-responsive amphiphilic PEG-dendron hybrids bearing one, two or four enzymatically cleavable azobenzene end-groups. These dual-responsive hybrids can respond to light through the reversible isomerization of the azobenzene end-groups from the non-polar trans isomer to the highly polar cis isomer and vice versa, upon UV and visible irradiation, respectively.
View Article and Find Full Text PDFThe need for advanced fluorescent imaging and delivery platforms has motivated the development of smart probes that change their fluorescence in response to external stimuli. Here a new molecular design of fluorescently labeled PEG-dendron hybrids that self-assemble into enzyme-responsive micelles with tunable fluorescent responses is reported. In the assembled state, the fluorescence of the dyes is quenched or shifted due to intermolecular interactions.
View Article and Find Full Text PDFThe high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons.
View Article and Find Full Text PDFEnzyme-responsive micelles have great potential as drug delivery platforms due to the high selectivity of the activating enzymes. Here we report a highly modular design for the efficient and simple synthesis of amphiphilic block copolymers based on a linear hydrophilic polyethyleneglycol (PEG) and an enzyme-responsive hydrophobic dendron. These amphiphilic hybrids self-assemble in water into micellar nanocontainers that can disassemble and release encapsulated molecular cargo upon enzymatic activation.
View Article and Find Full Text PDFThe potential for manipulation and control inherent in molecule-based motors holds great scientific and technological promise. Molecules containing the azobenzene group have been heavily studied in this context. While the effects of the cis-trans isomerization of the azo group in such molecules have been examined macroscopically by a number of techniques, modulations of the elastic modulus upon isomerization in self-assembled films were not yet measured directly.
View Article and Find Full Text PDFThin, long gold/silver nanowires were grown on substrates in thin surfactant solution films. This growth process occurred exclusively in thinning aqueous films as the water evaporated, and elongated surfactant template structures were formed. The nanowire growth depended on the presence of a relatively high concentration of silver ions (typical Ag:Au mole ratio of 1:1).
View Article and Find Full Text PDF