Publications by authors named "Einat Nativ-Roth"

pH fluctuations within the extracellular matrix (ECM) and its principal constituent collagen, particularly in solid tumors and chronic wounds, may influence its structure and function. Whereas previous research examined the impact of pH on collagen fibrillogenesis, this study focuses on determining how pH fluctuations affect collagen hydrogels that mimic the physiological ECM. Utilizing a type I collagen hydrogel, we examined the influence of pH fluctuations on its structure, properties, and function while keeping the collagen hydrated.

View Article and Find Full Text PDF

Peptide self-assembly is a powerful tool to prepare functional materials at the nanoscale. Often, the resulting materials have high aspect-ratio, with intermolecular β-sheet formation underlying 1D fibrillar structures. Inspired by dynamic structures in nature, peptide self-assembly is increasingly moving toward stimuli-responsive designs wherein assembled structures are formed, altered, or dissipated in response to a specific cue.

View Article and Find Full Text PDF
Article Synopsis
  • Aqueous graphene dispersions can be created by chemically or physically modifying graphene, but their viscosity depends directly on graphene concentration, limiting their use.
  • An alternative method involves using charged fibrous clay (Sepiolite) to trap graphene, which allows rheological properties to be influenced by the clay instead.
  • By adjusting the clay's surface charge with NaCl or HMP, researchers found that they could lower viscosity significantly while keeping the graphene concentration constant, making it possible to cater to different application needs.
View Article and Find Full Text PDF

Background: In Doxil®, PEGylated nanoliposomes are created by hydration of the lipids in ammonium sulfate, and are remotely loaded with doxorubicin by a transmembrane ammonium gradient. The ammonium sulfate is then removed from the external aqueous phase, surrounding the liposomes, and replaced by an isoosmotic sucrose solution in 10 mM histidine buffer at pH 6.5.

View Article and Find Full Text PDF
Article Synopsis
  • Existing nanocolloidal optical resonators face challenges like complicated synthesis methods and limited tunability, especially in synchronizing electric and magnetic resonances necessary for Huygens scatterers.
  • The study introduces a new method for synthesizing clusters of gold nanoparticles using an emulsion-based approach, which achieves better structural control and production volume.
  • Experimental results indicate that these clusters demonstrate strong optical magnetic resonances and can be fine-tuned by altering their internal structure, making them promising candidates for Huygens metasurfaces.
View Article and Find Full Text PDF

The uniqueness of Doxil can be attributed, to a large extent, to its intraliposomal doxorubicin-sulfate nanorod crystal. We re-examine these nanocrystal features and their mechanism of the formation by studying pegylated liposomal doxorubicins (PLDs) of the same lipid composition, size distribution, and extraliposome medium that were prepared at different ammonium sulfate (AS) concentrations. This study includes a comparison of the thermotropic behavior, morphology, and in vitro ammonia-induced doxorubicin release (relevant to Doxil's in vivo performance) of these PLDs.

View Article and Find Full Text PDF

Size and morphology distributions are critical to the performance of nano-drug systems, as they determine drug pharmacokinetics and biodistribution. Therefore, comprehensive and reliable analyses of these properties are required by both the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). In this study, we compare two most commonly used approaches for assessing the size distribution and morphology of liposomal nano-drug systems, namely, dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM); an automated quantitative analysis method was developed for the latter method.

View Article and Find Full Text PDF

The formation of nematic-like islands of single-walled carbon nanotubes (SWNT) in polystyrenesulfonate (PSS) dispersions confined into nanometrically thin films is reported. The SWNT are observed to assemble into orientationally ordered phases, where the intertube distance, as measured via transmission electron microscopy at cryogenic temperatures, matches the polyelectrolyte's bulk correlation length deduced from X-ray scattering. The micrometers-long islands of orientationally ordered carbon nanotubes are observed in both SWNT and double-walled carbon nanotubes (DWNT) but not in specimens prepared from similar dispersions of multiwalled carbon nanotubes (MWNT).

View Article and Find Full Text PDF

Mupirocin was identified by quantitative structure property relationship models as a good candidate for remote liposomal loading. Mupirocin is an antibiotic that is currently restricted to topical administration because of rapid hydrolysis in vivo to its inactive metabolite. Formulating mupirocin in PEGylated nanoliposomes may potentially expand its use to parenteral administration by protecting it from degradation in the circulation and target it (by the enhanced permeability effect) to the infected tissue.

View Article and Find Full Text PDF

The effect of single-walled carbon nanotubes (SWNT) on the phase behavior of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions is investigated at room temperature. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) are used for characterization of bulk dispersions and nanometrically thin films. Additional carbonaceous additives (fullerenes, multi-walled carbon nanotubes, and carbon black) serve as reference systems.

View Article and Find Full Text PDF

Single-walled carbon nanotubes were found to induce elongation and alignment of surfactant micelles in thin films under the action of shear, leading to the formation of ordered arrays over micron lengths.

View Article and Find Full Text PDF

Dimensionality is known to play a key role in the solution behavior of nano- and mesoparticles. In particular, the shape and the range of the attractive van der Waals interparticle potential are determined by the number of microscopic versus mesoscopic dimensions. For single-walled nanotubes (SWNTs), where two of the dimensions are nanoscopic and one is mesoscopic, the intertube attraction is relatively short ranged, albeit very steep.

View Article and Find Full Text PDF

A generic noncovalent approach for dispersing high concentrations of individual single-walled carbon nanotubes (SWNT) in organic as well as aqueous solutions of synthetic block copolymers is presented. It is suggested that a weak, long-ranged entropic repulsion among polymer-decorated tubes acts as a barrier that prevents the tubes from approaching the attractive part of the intertube potential. The method opens a new route for utilization of block copolymers as compatibilizers for SWNT, improving the incorporation of de-agglomerated SWNT into target polymeric matrixes.

View Article and Find Full Text PDF