Trisomy 21, the genetic cause of Down syndrome, disrupts primary cilia formation and function, in part through elevated Pericentrin, a centrosome protein encoded on chromosome 21. Yet how trisomy 21 and elevated Pericentrin disrupt cilia-related molecules and pathways, and the in vivo phenotypic relevance remain unclear. Utilizing ciliogenesis time course experiments combined with light microscopy and electron tomography, we reveal that chromosome 21 polyploidy elevates Pericentrin and microtubules away from the centrosome that corral MyosinVA and EHD1, delaying ciliary membrane delivery and mother centriole uncapping essential for ciliogenesis.
View Article and Find Full Text PDFMotile cilia beat with an asymmetric waveform consisting of a power stroke that generates a propulsive force and a recovery stroke that returns the cilium back to the start. Cilia are anchored to the cell cortex by basal bodies (BBs) that are directly coupled to the ciliary doublet microtubules (MTs). We find that, consistent with ciliary forces imposing on BBs, bending patterns in BB triplet MTs are responsive to ciliary beating.
View Article and Find Full Text PDFElectron tomography of the chemical synapse provides important architectural information regarding the organization of synaptic organelles including synaptic vesicles, Nissl bodies, and early endosomes. Here, we describe methods for the preparation of select murine brain regions for high-pressure freezing, freeze substitution, and EM tomographic analysis of synaptic structures. The method uses fresh brain slices prepared using a vibratome and biopsy punches to collect specific brain regions of interest suitable for subsequent preservation and EM tomographic imaging.
View Article and Find Full Text PDFControl of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly.
View Article and Find Full Text PDFCompromised protein homeostasis underlies accumulation of plaques and tangles in Alzheimer's disease (AD). To observe protein turnover at early stages of amyloid beta (Aβ) proteotoxicity, we performed pulse-chase proteomics on mouse brains in three genetic models of AD that knock in alleles of amyloid precursor protein (APP) prior to the accumulation of plaques and during disease progression. At initial stages of Aβ accumulation, the turnover of proteins associated with presynaptic terminals is selectively impaired.
View Article and Find Full Text PDFRationale: The sarcolemma of cardiomyocytes contains many proteins that are essential for electromechanical function in general, and excitation-contraction coupling in particular. The distribution of these proteins is nonuniform between the bulk sarcolemmal surface and membrane invaginations known as transverse tubules (TT). TT form an intricate network of fluid-filled conduits that support electromechanical synchronicity within cardiomyocytes.
View Article and Find Full Text PDFGermline and somatic genomes are in general the same in a multicellular organism. However, programmed DNA elimination leads to a reduced somatic genome compared to germline cells. Previous work on the parasitic nematode Ascaris demonstrated that programmed DNA elimination encompasses high-fidelity chromosomal breaks and loss of specific genome sequences including a major tandem repeat of 120 bp and ~1,000 germline-expressed genes.
View Article and Find Full Text PDFBasal bodies (BBs) are microtubule-based organelles that act as a template for and stabilize cilia at the cell surface. Centrins ubiquitously associate with BBs and function in BB assembly, maturation and stability. Human POC5 (hPOC5) is a highly conserved centrin-binding protein that binds centrins through Sfi1p-like repeats and is required for building full-length, mature centrioles.
View Article and Find Full Text PDFMulti-ciliary arrays promote fluid flow and cellular motility using the polarized and coordinated beating of hundreds of motile cilia. Tetrahymena basal bodies (BBs) nucleate and position cilia, whereby BB-associated striated fibers (SFs) promote BB anchorage and orientation into ciliary rows. Mutants that shorten SFs cause disoriented BBs.
View Article and Find Full Text PDFCiliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules.
View Article and Find Full Text PDFMotile cilia generate directed hydrodynamic flow that is important for the motility of cells and extracellular fluids. To optimize directed hydrodynamic flow, motile cilia are organized and oriented into a polarized array. Basal bodies (BBs) nucleate and position motile cilia at the cell cortex.
View Article and Find Full Text PDFNeutralizing antibodies (NAbs) are traditionally thought to inhibit virus infection by preventing virion entry into target cells. In addition, antibodies can engage Fc receptors (FcRs) on immune cells to activate antiviral responses. We describe a mechanism by which NAbs inhibit chikungunya virus (CHIKV), the most common alphavirus infecting humans, by preventing virus budding from infected human cells and activating IgG-specific Fcγ receptors.
View Article and Find Full Text PDFPhosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components.
View Article and Find Full Text PDFCold Spring Harb Protoc
March 2017
has been an important model system for numerous cellular, genetic, and molecular studies. However, this small eukaryote presents a challenge for imaging at the electron microscope level. Preparation of yeast using high-pressure freezing followed by freeze-substitution (HPF/FS) results in excellent preservation of cell structure in these difficult-to-fix samples.
View Article and Find Full Text PDFThree-dimensional imaging of cells using electron tomography enables analysis of cell structure at unprecedented resolution. The preparation of cells for tomography using rapid freezing followed by freeze-substitution is an essential first step to ensure the optimal preservation of the cell structure for 3D studies. This protocol outlines a method for obtaining well-preserved cells using high-pressure freezing followed by freeze-substitution.
View Article and Find Full Text PDFElectrophysiological studies of excitable organs usually focus on action potential (AP)-generating cells, whereas nonexcitable cells are generally considered as barriers to electrical conduction. Whether nonexcitable cells may modulate excitable cell function or even contribute to AP conduction via direct electrotonic coupling to AP-generating cells is unresolved in the heart: such coupling is present in vitro, but conclusive evidence in situ is lacking. We used genetically encoded voltage-sensitive fluorescent protein 2.
View Article and Find Full Text PDFFaithful genome propagation requires coordination between nuclear envelope (NE) breakdown, spindle formation, and chromosomal events. The conserved linker of nucleoskeleton and cytoskeleton (LINC) complex connects fission yeast centromeres and the centrosome, across the NE, during interphase. During meiosis, LINC connects the centrosome with telomeres rather than centromeres.
View Article and Find Full Text PDFThe unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies.
View Article and Find Full Text PDFThe field of cardiovascular research has benefitted from rapid developments in imaging technology over the last few decades. Accordingly, an ever growing number of large, multidimensional data sets have begun to appear, often challenging existing pre-conceptions about structure and function of biological systems. For tissue and cell structure imaging, the move from 2D section-based microscopy to true 3D data collection has been a major driver of new insight.
View Article and Find Full Text PDFContemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs.
View Article and Find Full Text PDFDespite the broadly conserved role of microtubules in chromosome segregation, we have a limited understanding of how molecular features of tubulin proteins contribute to the underlying mechanisms. Here we investigate the negatively charged carboxy-terminal tail domains (CTTs) of α- and β-tubulins, using a series of mutants that alter or ablate CTTs in budding yeast. We find that ablating β-CTT causes elevated rates of chromosome loss and cell cycle delay.
View Article and Find Full Text PDFA characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro-tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end-tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm).
View Article and Find Full Text PDFThe length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro-tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore-microtubule interactions generate an inward force to balance forces that elongate the spindle.
View Article and Find Full Text PDFThe exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles ('bulk' endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process.
View Article and Find Full Text PDFResearchers have used transmission electron microscopy (TEM) to make contributions to cell biology for well over 50 years, and TEM continues to be an important technology in our field. We briefly present for the neophyte the components of a TEM-based study, beginning with sample preparation through imaging of the samples. We point out the limitations of TEM and issues to be considered during experimental design.
View Article and Find Full Text PDF