Publications by authors named "Eileen Seward"

Hematopoietic progenitor kinase 1 (HPK1) serves a key immunosuppressive role as a negative regulator of T-cell receptor (TCR) signaling. HPK1 loss-of-function is associated with augmentation of immune function and has demonstrated synergy with immune checkpoint inhibitors in syngeneic mouse cancer models. These data offer compelling evidence for the use of selective small molecule inhibitors of HPK1 in cancer immunotherapy.

View Article and Find Full Text PDF

Hematopoietic progenitor kinase 1 (HPK1) is implicated as a negative regulator of T-cell receptor-induced T-cell activation. Studies using HPK1 kinase-dead knock-in animals have demonstrated the loss of HPK1 kinase activity resulted in an increase in T-cell function and tumor growth inhibition in glioma models. Herein, we describe the discovery of a series of small molecule inhibitors of HPK1.

View Article and Find Full Text PDF

A novel selective benzoxazepin inhibitor of PI3Kδ has been discovered. Beginning from compound , an αPI3K inhibitor, we utilized structure-based drug design and computational analysis of dihedral torsion angles to optimize for PI3Kδ isoform potency and isoform selectivity. Further medicinal chemistry optimization of the series led to the identification of , a highly potent and selective inhibitor of PI3Kδ.

View Article and Find Full Text PDF

Inhibitors targeting the activating mutants of the epidermal growth factor receptor (EGFR) have found success in the treatment of EGFR mutant positive non-small-cell lung cancer. A secondary point mutation (T790M) in the inhibitor binding site has been linked to the acquired resistance against those first generation therapeutics. Herein, we describe the lead optimization of a series of reversible, pan-mutant (L858R, del T790M/L858R, and T790M/del) EGFR inhibitors.

View Article and Find Full Text PDF

The rapid advancement of a series of noncovalent inhibitors of T790M mutants of EGFR is discussed. The optimization of pyridone 1, a nonselective high-throughput screening hit, to potent molecules with high levels of selectivity over wtEGFR and the broader kinome is described herein.

View Article and Find Full Text PDF

Because of their increased activity against activating mutants, first-generation epidermal growth factor receptor (EGFR) kinase inhibitors have had remarkable success in treating non-small-cell lung cancer (NSCLC) patients, but acquired resistance, through a secondary mutation of the gatekeeper residue, means that clinical responses only last for 8-14 months. Addressing this unmet medical need requires agents that can target both of the most common double mutants: T790M/L858R (TMLR) and T790M/del(746-750) (TMdel). Herein we describe how a noncovalent double mutant selective lead compound was optimized using a strategy focused on the structure-guided increase in potency without added lipophilicity or reduction of three-dimensional character.

View Article and Find Full Text PDF

Checkpoint kinase 1 (ChK1) plays a key role in the DNA damage response, facilitating cell-cycle arrest to provide sufficient time for lesion repair. This leads to the hypothesis that inhibition of ChK1 might enhance the effectiveness of DNA-damaging therapies in the treatment of cancer. Lead compound 1 (GNE-783), the prototype of the 1,7-diazacarbazole class of ChK1 inhibitors, was found to be a highly potent inhibitor of acetylcholine esterase (AChE) and unsuitable for development.

View Article and Find Full Text PDF

Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibitor 2 caused micronuclei formation in laboratory cell assays, indicating potential genotoxic effects.
  • By altering the 2-benzimidazole structure and heteroatom linkers, researchers created compounds that improved selectivity for PI3Kδ and showed better pharmacokinetics in live models.
View Article and Find Full Text PDF

Inhibition of PI3Kδ is considered to be an attractive mechanism for the treatment of inflammatory diseases and leukocyte malignancies. Using a structure-based design approach, we have identified a series of potent and selective benzimidazole-based inhibitors of PI3Kδ. These inhibitors do not occupy the selectivity pocket between Trp760 and Met752 that is induced by other families of PI3Kδ inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • - A new inhibitor of the PI3Kδ enzyme is introduced, showing over 200 times more selectivity for other PI3K isoforms and additional kinases.
  • - The selectivity is explained using structure-activity relationships and detailed crystal structures of the inhibitor bound to a specific mutant form of PI3Kγ.
  • - Pharmacokinetic studies in rats and mice indicate that this inhibitor could be a valuable tool for in vivo research.
View Article and Find Full Text PDF
Article Synopsis
  • PI3Kδ is a lipid kinase found mostly in leukocytes and plays a crucial role in B cell signaling, making it a target for treating diseases like rheumatoid arthritis.
  • Researchers discovered new, effective PI3Kδ inhibitors and developed a structural understanding that supports their ability to selectively inhibit different PI3K isoforms (α, β, γ).
  • The study highlighted a key element in their design that relates to CYP3A4 time-dependent inhibition, and various strategies were suggested to monitor and reduce this inhibitor issue, utilizing structure-based design for further improvements.
View Article and Find Full Text PDF

Chemical double mutant cycles have been used to measure the magnitude of edge-to-face aromatic interactions in hydrogen-bonded zipper complexes as a function of substituents on both aromatic rings. The interaction energies vary depending on the combination of substituents from +1.0 kJ mol-1 (repulsive), to -4.

View Article and Find Full Text PDF

A series of novel spiroketal-based NK(1) antagonists is described. The effect of modifications to the spiroether ring and aromatic substituents are discussed, leading to the identification of compounds with high affinity and excellent CNS penetration.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionh3pgdecdeo7nsf7qmdeemi47lj0ba6ho): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once