Publications by authors named "Eileen S Marks-Nelson"

Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; = 9) or saline (IUGR; = 8) for 5 days during late gestation and compared to saline-infused controls ( = 11).

View Article and Find Full Text PDF

Stress-induced fetal programming diminishes β2 adrenergic tone, which coincides with intrauterine growth restriction () and lifelong metabolic dysfunction. We determined if stimulating β2 adrenergic activity in IUGR-born lambs would improve metabolic outcomes. IUGR lambs that received daily injections of saline or the β2 agonist clenbuterol from birth to 60 days were compared with controls from pair-fed thermoneutral pregnancies.

View Article and Find Full Text PDF

Intrauterine growth restriction () is associated with reduced β2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating β2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring. Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7).

View Article and Find Full Text PDF

In humans and animals, intrauterine growth restriction (IUGR) results from fetal programming responses to poor intrauterine conditions. Chronic fetal hypoxemia elevates circulating catecholamines, which reduces skeletal muscle β2 adrenoceptor content and contributes to growth and metabolic pathologies in IUGR-born offspring. Our objective was to determine whether intermittent maternofetal oxygenation during late gestation would improve neonatal growth and glucose metabolism in IUGR-born lambs.

View Article and Find Full Text PDF

Intrauterine stress impairs growth and metabolism in the fetus and offspring. We recently found that sustained maternofetal inflammation resulted in intrauterine growth-restricted (MI-IUGR) fetuses with asymmetric body composition, impaired muscle glucose metabolism, and β-cell dysfunction near term. These fetuses also exhibited heightened inflammatory tone, which we postulated was a fetal programming mechanism for the IUGR phenotype.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease predominantly affecting women and often leading to lupus nephritis and kidney damage. Endoplasmic reticulum (ER) stress has been implicated in several forms of kidney disease, but whether ER stress contributes to renal injury in SLE is unknown. To investigate this, a small molecule chaperone, sodium 4-phenylbutyrate (4-PBA), was administered to the New Zealand Black x New Zealand White F hybrid (NZBWF1) mouse model of SLE.

View Article and Find Full Text PDF