The multiple mating type system of the Ciliate is a self/non-self recognition system, whose specificity resides in a head-to-head, functionally distinct pair of genes, . We have now sequenced and analyzed these mating type genes in nine additional species. We conclude that and are derived from a common ancestral gene and have co-evolved for at least ∼150 Myr.
View Article and Find Full Text PDFDevelopmentally programmed genome rearrangement accompanies differentiation of the silent germline micronucleus into the transcriptionally active somatic macronucleus in the ciliated protozoan Tetrahymena thermophila. Internal eliminated sequences (IES) are excised, followed by rejoining of MAC-destined sequences, while fragmentation occurs at conserved chromosome breakage sequences, generating macronuclear chromosomes. Some macronuclear chromosomes, referred to as non-maintained chromosomes (NMC), are lost soon after differentiation.
View Article and Find Full Text PDFThe germline genome of the binucleated ciliate undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped chromosome structure, locally and globally.
View Article and Find Full Text PDFUsing serial-section transmission electron microscopy and three-dimensional (3D) electron tomography, we characterized membrane dynamics that accompany the construction of a nuclear exchange junction between mating cells in the ciliate Tetrahymena thermophila. Our methods revealed a number of previously unknown features. (i) Membrane fusion is initiated by the extension of hundreds of 50-nm-diameter protrusions from the plasma membrane.
View Article and Find Full Text PDFThe unicellular eukaryote Tetrahymena thermophila has seven mating types. Cells can mate only when they recognize cells of a different mating type as non-self. As a ciliate, Tetrahymena separates its germline and soma into two nuclei.
View Article and Find Full Text PDFGenetically programmed DNA rearrangements can regulate mRNA expression at an individual locus or, for some organisms, on a genome-wide scale. Ciliates rely on a remarkable process of whole-genome remodeling by DNA elimination to differentiate an expressed macronucleus (MAC) from a copy of the germline micronucleus (MIC) in each cycle of sexual reproduction. Here we describe results from the first high-throughput sequencing effort to investigate ciliate genome restructuring, comparing Sanger long-read sequences from a Tetrahymena thermophila MIC genome library to the MAC genome assembly.
View Article and Find Full Text PDFTetrahymena thermophila is a ciliate--a unicellular eukaryote. Remarkably, every cell maintains differentiated germline and somatic genomes: one silent, the other expressed. Moreover, the two genomes undergo diverse processes, some as extreme as life and death, simultaneously in the same cytoplasm.
View Article and Find Full Text PDFBackground: Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly.
View Article and Find Full Text PDFObjective: To describe the nutrient and food composition of the diets tested in the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OmniHeart).
Design: Two center, randomized, three-period crossover, controlled feeding trial that tested the effects of three healthful diet patterns on blood pressure, serum lipid levels, and estimated cardiovascular risk.
Subjects/setting: One hundred sixty-four participants with prehypertension and hypertension.
Background: Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals.
Methodology/principal Findings: We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize the structure of these proteins.
The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction.
View Article and Find Full Text PDFTetrahymena thermophila is the best studied of the ciliates, a diversified and successful lineage of eukaryotic protists. Mirroring the way in which many metazoans partition their germ line and soma into distinct cell types, ciliates separate germ line and soma into two distinct nuclei in a single cell. The diploid, transcriptionally silent micronucleus undergoes meiosis and fertilization during sexual reproduction and determines the genotype of the progeny; in contrast, the expressed macronucleus contains many copies of hundreds of small chromosomes, determines the cell's phenotype, and is inherited only through vegetative reproduction.
View Article and Find Full Text PDFAs a typical ciliate, Tetrahymena thermophila is a unicellular eukaryote that exhibits nuclear dimorphism: each cell contains a diploid, germ line micronucleus (MICN) and a polyploid, somatic macronucleus (MACN). During conjugation, when a new MACN differentiates from a mitotic descendant of the diploid fertilization nucleus, the five MICN chromosomes are site-specifically fragmented into 250 to 300 MACN chromosomes. The classic chromosome breakage sequence (CBS) is a 15-bp element (TAAACCAACCTCTTT) reported to be necessary and sufficient for chromosome breakage.
View Article and Find Full Text PDFThe chromosomes of the macronuclear (expressed) genome of Tetrahymena thermophila are generated by developmental fragmentation of the five micronuclear (germline) chromosomes. This fragmentation is site specific and directed by a conserved 15-bp chromosome breakage sequence (Cbs element). This article reports the construction of a library enriched for chromosome breakage junctions and the development of a successful scheme for the genome-wide isolation and characterization of functional Cbs junctions.
View Article and Find Full Text PDFThe chromosomes of the macronuclear (expressed) genome of Tetrahymena thermophila are generated by developmental fragmentation of the five micronuclear (germline) chromosomes. This fragmentation is site specific, directed by a conserved chromosome breakage sequence (Cbs element). An accompanying article in this issue reports the development of a successful scheme for the genome-wide cloning and identification of functional chromosome breakage sites.
View Article and Find Full Text PDF