A four-step synthesis for 4,6-bis(diphenylphosphinoylmethyl)dibenzofuran (4) from dibenzofuran and a two-step synthesis for 4,6-bis(diphenylphosphinoyl)dibenzofuran (5) are reported along with coordination chemistry of 4 with In(III), La(III), Pr(III), Nd(III), Er(III), and Pu(IV) and of 5 with Er(III). Crystal structure determinations for the ligands, 4·CH(3)OH and 5, the 1:1 complexes [In(4)(NO(3))(3)], [Pr(4)(NO(3))(3)(CH(3)CN)]·0.5CH(3)CN, [Er(4)(NO(3))(3)(CH(3)CN)]·CH(3)CN, [Pu(4)Cl(4)]·THF and the 2:1 complex [Nd(4)(2)(NO(3))(2)](2)(NO(3))(2)·(H(2)O)·4(CH(3)OH) are described.
View Article and Find Full Text PDFAn efficient three step synthesis of (benzoxazol-2-ylmethyl)phosphonic acid (6-H(2)) is described along with IR, mass spectrometry (MS), and (1)H, (13)C, and (31)P NMR spectroscopic characterization data, and a single crystal X-ray diffraction structure determination. 6-H(2) is unstable in acidic aqueous solutions (pH < 4) undergoing ring-opening to give [(2-hydroxyphenylcarbamoyl)methyl] phosphonic acid (7-H(2)) that is characterized by IR, MS, and NMR methods. The protonation constants (pK(a)) for 7-H(2) have been measured, and crystal structure determinations for (NH(4))(7-H) and K(7-H)·DMF are described.
View Article and Find Full Text PDFThe reactions of (Me(3)Si)(3)Al, Me(3)Al, Et(3)Al, and i-Bu(3)Al with 1,3,4,5,6-pentamethyl-2-aminoborazine have been examined. An amine alane adduct (Me(3)Si)(3)Al.NH(2)B(3)(Me)(2)N(3)Me(3) (1) and several elimination products [(Me(3)Si)(2)AlN(H)B(3)(Me)(2)N(3)Me(3)](2) (2), [(Me(3)SiAl)(4)(Me(3)SiN)(3)NH] (3), [Me(2)AlN(H) B(3)(Me)(2)N(3)Me(3)](2) (4), [Et(2)AlN(H) B(3)(Me)(2)N(3)Me(3)](2) (5), and [i-Bu(2)AlN(H) B(3)(Me)(2)N(3)Me(3)](2) (6) have been isolated.
View Article and Find Full Text PDFA synthetic route for the formation of 2-[bis(2-trifluoromethylphenyl)phosphinoylmethyl]pyridine N-oxide (1c) and 2-[bis(3,5-trifluoromethylphenyl)phosphinoylmethyl]pyridine N-oxide (1d) was developed and the new ligands characterized by spectroscopic methods and single-crystal X-ray diffraction analyses. The coordination chemistry of 1c was examined with Yb(NO3)3 and the molecular structure of one complex, [Yb(1c)(NO3)3(DMF)].DMF.
View Article and Find Full Text PDFThe syntheses and full characterization of nickel hydrides containing the PCP "pincer"-type ligand, where PCP = 2,6-C(6)H(3)(CH(2)PR(2))(2) (R = tBu, cHex, and iPr), are reported. These Ni-H complexes are prepared by the conversion of ((R)PCP)NiCl precursors into the corresponding nickel hydrides by use of appropriate hydride donors. Surprisingly, although the ((R)PCP)NiCl precursors are quite similar chemically, the conversions to the hydrides were not straightforward and required different hydride reagents to provide analytically pure products.
View Article and Find Full Text PDFPhosphinoyl Grignard-based substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation of the intermediate 2,6-bis(phosphinoyl)methylpyridine compounds with mCPBA give the target trifunctional ligands 2,6-bis[bis(2-trifluoromethylphenyl)phosphinoylmethyl]pyridine 1-oxide (2a) and 2,6-bis[bis(3,5-bis(trifluoromethyl)phenyl)phosphinoylmethyl]pyridine 1-oxide (2b) in high yields. The ligands have been spectroscopically characterized, the molecular structures confirmed by single crystal X-ray diffraction methods, and the coordination chemistry surveyed with lanthanide nitrates. Single crystal X-ray diffraction analyses are described for the coordination complexes Nd(2a)(NO(3))(3), Nd(2a)(NO(3))(3) x (CH(3)CN)(0.
View Article and Find Full Text PDFWe have isolated and structurally characterized a terminal iron nitrido complex supported by a bulky tris(carbene)borate ligand. The electronic structure of this complex reveals that the a1 LUMO (formerly Fe(dz2)) is strongly stabilized by reduced antibonding interactions with the carbene sigma-donor ligands and configurational mixing (hybridization) with higher lying Fe 4s and 4p atomic orbitals. This unusual bonding interaction results in a low-lying Fe nitrido acceptor orbital (LUMO) that possesses electrophilic character.
View Article and Find Full Text PDFIntegrated paramagnetic resonance, utilizing electron paramagnetic resonance (EPR), NMR, and electron-nuclear double resonance (ENDOR), of a series of cobalt bis-trispyrazolylborates, Co(Tp ( x )) 2, are reported. Systematic substitutions at the ring carbons and on the apical boron provide a unique opportunity to separate through-bond and through-space contributions to the NMR hyperfine shifts for the parent, unsubstituted Tp complex. A simple relationship between the chemical shift difference (delta H - delta Me) and the contact shift of the proton in that position is developed.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
October 2008
The Ni(II) atom in the title compound, [Ni(C(24)H(43)P(2))(NO(3))], adopts a distorted square-planar geometry with the P atoms in a trans arrangement. The compound contains a twofold rotational axis with the nitrate group offset from this axis, except for an O atom of the nitrate group, generating two positions of 50% occupancy for the other atoms of the nitrate group.
View Article and Find Full Text PDFSynthetic routes to 2-(pyridin-2-yl)-N,N-diphenylacetamide and 2-(6-methylpyridin-2-yl)-N,N-diphenyl-acetamide are described along with results from the chemical oxidation of these compounds with peracetic acid, m-chloroperbenzoic acid, and OXONE. In each case, oxidations generate four products in varying amounts depending on the oxidant and reaction conditions. Each product has been characterized by spectroscopic methods and the molecular structures of several of the new compounds have been confirmed by X-ray crystallography.
View Article and Find Full Text PDFA conjugate addition-aldol-dehydration reaction of alpha,beta-unsaturated aldehydes with 2-N-protected amino benzaldehydes has been developed. The process is promoted by (S)-diphenylprolinol TES ether to afford synthetically useful 1,2-dihydroquinolines in high enantioselectivities with good yields. [reaction: see text]
View Article and Find Full Text PDFSecond-coordination sphere effects such as hydrogen bonding and steric constraints that provide for specific geometric configurations play a critical role in tuning the electronic structure of metalloenzyme active sites and thus have a significant effect on their catalytic efficiency. Crystallographic characterization of vertebrate and plant sulfite oxidase (SO) suggests that an average O(oxo)-Mo-S(Cys)-C dihedral angle of approximately 77 degrees exists at the active site of these enzymes. This angle is slightly more acute (approximately 72 degrees) in the bacterial sulfite dehydrogenase (SDH) from Starkeya novella.
View Article and Find Full Text PDFLow-temperature deprotonation of the phenylborane dications, PhB(RIm)3OTf2 (R = tBu, Mes), followed by in situ reaction with CoCl2(thf)1.5, results in the formation of the four-coordinate complexes, kappa3-PhB(RIm)3CoCl, in which the metal is supported by tripodal N-heterocyclic carbene-based ligands. The chloride complexes are exceptionally sensitive to acid and can be reversibly protonated to form the zwitterions kappa2-{PhB(RIm)2(RIm.
View Article and Find Full Text PDFThe trifunctional ligands, [(HO)2P(O)CH2]2C6H2(R)OH, (5-H4)(R = CH3, Br) were prepared in good yield via an Arbusov reaction between P(OEt)3 and the respective 4-R-2,6-bis(chloromethyl)phenols followed by acidic aqueous hydrolysis and they were spectroscopically characterized by IR and NMR techniques. The ligand 5-H4-CH3 readily dissolves lanthanide hydroxide residues and it forms a crystalline complex from aqueous LaCl3 solutions. This complex was characterized by single crystal X-ray diffraction methods and found to adopt a complex 2-D lamellar network in the bc plane.
View Article and Find Full Text PDFThe compound 2,6-bis(N-tert-butylacetamide)pyridine (2) was obtained via a Ritter synthesis, and oxidation with oxone provided the title pyridine-N-oxide (3). The compounds were characterized by spectroscopic methods, and the molecular structure of the N-oxide was determined by single-crystal X-ray diffraction methods. The coordination chemistry with Eu(NO3)3 was examined by using 1:1 and 2:1 ligand/Eu ratios, and a single-crystal X-ray analysis for Eu(3)(NO3)3(H2O) was completed.
View Article and Find Full Text PDFA multistep synthesis for 2-(2-pyridyl-N-oxide) ethylphosphonic acid 6-H2 is described along with its spectroscopic (IR, NMR) data and a single-crystal X-ray diffraction structure analysis. Combination of the ligand with Nd(OH)3 results in the formation of a complex Nd(6-H)3. Single-crystal X-ray diffraction analysis reveals a three-dimensional crystal network generated by hydrogen-bonded chains along the crystallographic c axis.
View Article and Find Full Text PDFThe results of studies described in this report show that irradiation of 1,2-cyclopenta-fused pyridinium perchlorate in aqueous base promotes a remarkably regioselective photocyclization reaction that results in exclusive formation of a single tricyclic allylic alcohol. Moreover, transformation of this photoproduct to a spirocyclic amido diester followed by enzymatic desymmetrization produces an enantiomerically pure monoalcohol. This chemistry comprises a highly concise sequence for the preparation of what should become a useful synthon in synthetic organic chemistry.
View Article and Find Full Text PDF[reaction: see text] A strategy for the concise synthesis of trehazolamine, the aminocyclitol core of the potent trehalase inhibitor trehazolin, has been developed. The methodology takes advantage of photocyclization reaction of 1-methoxyethoxymethyl-3-pivaloxymethylpyridinium perchlorate to generate a bicyclic-aziridine intermediate, which is transformed under aziridine ring opening conditions to the key intermediate, 3,5-diacetoxy-3-pivaloxymethyl-4-(N-acetylamino)cyclopentene. In addition, the strategy is used in an enantio-divergent sequence for preparation of the natural (+)-trehazolamine and its unnatural (-)-enantiomer.
View Article and Find Full Text PDFRuthenium-catalyzed ring rearrangement metathesis (RRM) reactions of stereochemically diverse, differentially protected 4-N-allylacetamidocyclopenten-3,5-diols, prepared by using pyridinium salt photochemistry, have been explored as part of a program to develop novel routes for the synthesis of polyhydroxylated indolizidines. The RRM reactions, which produce selectively protected 1-acetyl-2-allyl-3-hydroxy-1,2,3,6-tetrahydropyridines, were found to take in high yields and with high levels of regioselectivity. The significance of RRM reactions of 4-N-allylacetamidocyclopenten-3,5-diols in the context of polyhydroxylated indolizidine synthesis is demonstrated by an application to the concise preparation of the potent glycosidase inhibitor, (-)-swainsonine.
View Article and Find Full Text PDFSyntheses for 2-(pyridyl N-oxide) methylphosphonic acid, 1-H, and 2-(pyridyl N-oxide) hydroxymethylphosphonic acid, 4-H, are described, and the crystal structures of both ligands are presented. Combination of these ligands with freshly prepared erbium hydroxide results in the formation of the isostructural complexes Er(L(-))(3)(LH).8H(2)O.
View Article and Find Full Text PDFTwo mechanisms have been proposed for the beta-lactam-forming photochemical reactions of alpha-ketoamides. One, suggested by Aoyama, involves excited-state H-atom abstraction while the other, put forth by Whitten, follows a sequential SET-proton-transfer route. The photochemical properties of N-trimethylsilylmethyl- and N-tributylstannylmethyl-substituted alpha-ketoamides were explored in order to gain information about the mechanism of this process and to develop a regioselective method for beta-lactam formation.
View Article and Find Full Text PDFA novel method for the synthesis of cyclic peptide analogues has been developed. The general approach relies on the use of SET-promoted photocyclization reactions of peptides that contain N-terminal phthalimides as light absorbing electron acceptor moieties and C-terminal alpha-amidosilane or alpha-amidocarboxylate centers. Prototypical substrates are prepared by coupling preformed peptides with the acid chloride of N-phthalimidoglycine.
View Article and Find Full Text PDFThe reactions of Me(2)SiCl(2), Ph(2)SiCl(2), and Ph(2)GeCl(2) with LiP(H)B(N(i)Pr(2))(2) in a 1:2 ratio and the reaction of Ph(2)SiCl(2) with LiP(H)B(N(i)Pr(2))[N(SiMe(3))(2)] in a 1:2 ratio give good yields of the respective diphosphinosilanes, Me(2)Si[P(H)B(N(i)Pr(2))(2)](2), Ph(2)Si[P(H)B(N(i)Pr(2))(2)](2), Ph(2)Ge[P(H)B(N(i)Pr(2))(2)](2), and Ph(2)Si[P(H)B(N(i)Pr(2))[N(SiMe(3))(2)]](2). These species, when combined with BuLi in a 1:2 ratio, give lithium diphosphinosilanes and -germanes of the general type (DME.Li)(2){[PB(NR(2))(2)](2)ER'(2)}.
View Article and Find Full Text PDF