2-Oxoadenosine (2-oxo-Ado), an oxidized form of adenosine, is cytotoxic and induces growth arrest and cell death, which has potential as an anti-cancer drug. However, it is not well understood how 2-oxo-Ado exerts its cytotoxicity. We examined the effects of 2-oxo-Ado on non-tumour cells, namely immortalized mouse embryonic fibroblast lines, and investigated mechanisms by which 2-oxo-Ado exerts its cytotoxicity.
View Article and Find Full Text PDF8-Oxo-7,8-dihydroguanine (GO) can originate as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), an oxidized form of dGTP in the nucleotide pool, or by direct oxidation of guanine base in DNA. Accumulation of GO in cellular genomes can result in mutagenesis or programmed cell death, and is thus minimized by the actions of MutT homolog-1 (MTH1) with 8-oxo-dGTPase, OGG1 with GO DNA glycosylase and MutY homolog (MUTYH) with adenine DNA glycosylase. Studies on Mth1/Ogg1/Mutyh-triple knockout mice demonstrated that the defense systems efficiently minimize GO accumulation in cellular genomes, and thus maintain low incidences of spontaneous mutagenesis and tumorigenesis.
View Article and Find Full Text PDFTo identify novel nucleotide pool sanitizing enzymes, we have established a comprehensive screening system for damaged nucleotide-binding proteins based on proteomics technology. In the screening system, affinity chromatography with resins carrying various damaged nucleotides is used for the purification of binding proteins, and the purified proteins are identified by mass-spectrometry. Inosine triphosphate (ITP) is a deleterious damaged nucleotide, and can be generated by nitrosative deamination of ATP or phosphorylation of inosine monophosphate (IMP).
View Article and Find Full Text PDF