Publications by authors named "Eiki Koyama"

The initial interzone cells for synovial joints originate from chondrocytes, but such critical transition is minimally understood. With single-cell RNA sequencing (scRNA-seq) of murine embryonic knee joint primordia, we discovered that heightened expression of glycolysis genes characterized developing interzone cells when compared to flanking chondrocytes. Conditional deletion of the glucose transporters and/or , in either the incipient pre-skeletal mesenchyme with or in chondrocytes with , disrupted interzone formation dose-dependently.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding matrix molecular activities is key for developing regenerative strategies for TMJ disorders, with a focus on how collagen V impacts the growth and remodeling of condylar cartilage and the articular disc.
  • The study found that loss of collagen V significantly affects the proliferation and density of progenitor cells in condylar cartilage but has less impact on the disc cells, which behave more like fibroblasts.
  • Under conditions of altered occlusal loading, cartilage from mice lacking collagen V showed more degeneration and hypertrophy compared to wild-type, highlighting collagen V's critical role in condylar cartilage, suggesting its potential for enhancing TMJ regeneration in patients.
View Article and Find Full Text PDF
Article Synopsis
  • Heterotopic ossification (HO) is the abnormal formation of bone outside of the skeleton, which can be caused by trauma or genetic conditions like fibrodysplasia ossificans progressiva (FOP).
  • Recent studies highlighted that activin A plays a role in promoting both acquired and genetic forms of HO, while palovarotene, a retinoid agonist, has been shown to inhibit HO formation in mouse models.
  • In experiments, palovarotene significantly reduced the levels of activin A in HO tissues and decreased interactions among local cell populations, suggesting its potential as an effective treatment by targeting various mechanisms of bone formation in HO.
View Article and Find Full Text PDF

The early postnatal period represents a critical window for the maturation and development of orthopedic tissues, including those within the knee joint. To understand how mechanical loading impacts the maturational trajectory of the meniscus and other tissues of the hindlimb, perturbation of postnatal weight bearing was achieved through surgical resection of the sciatic nerve in neonatal mice at 1 or 14 days old. Sciatic nerve resection (SNR) produced significant and persistent disruptions in gait, leading to reduced tibial length and reductions in Achilles tendon mechanical properties.

View Article and Find Full Text PDF

Understanding early patterning events in the extracellular matrix (ECM) formation can provide a blueprint for regenerative strategies to better recapitulate the function of native tissues. Currently, there is little knowledge on the initial, incipient ECM of articular cartilage and meniscus, two load-bearing counterparts of the knee joint. This study elucidated distinctive traits of their developing ECMs by studying the composition and biomechanics of these two tissues in mice from mid-gestation (embryonic day 15.

View Article and Find Full Text PDF

The synovial cavity and its fluid are essential for joint function and lubrication, but their developmental biology remains largely obscure. Here, we analyzed E12.5 to E18.

View Article and Find Full Text PDF

Articular cartilage (AC) is essential for body movement but is highly susceptible to degenerative diseases and has poor self-repair capacity. To improve current subpar regenerative treatments, developmental mechanisms of AC should be clarified and, specifically, how its postnatal multizone organization is acquired. Primary cilia are cell surface organelles crucial for mammalian tissue morphogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • * A study used a mouse model with genetic alterations to investigate the role of heparanase (Hpse), an enzyme that influences heparan sulfate levels, in osteochondroma development but found that removing Hpse did not significantly affect tumor formation.
  • * Treatment with the retinoid Palovarotene successfully reduced osteochondroma formation in the mouse model, suggesting potential therapeutic options for managing HME, while indicating that heparanase might not be a key factor
View Article and Find Full Text PDF

Inactivation mutations in the Indian hedgehog (Ihh) gene in humans cause numerous skeletal chondrodysplasias, including acrocapitofemoral dysplasia, brachydactyly type A1, and human short stature. The lack of an appropriate human-relevant model to accurately represent these chondrodysplasias has hampered the identification of clinically effective treatments. Here, we established a mouse model of human skeletal dysplasia induced by Ihh gene mutations via ablation of Ihh in Aggrecan-positive (Acan+) cells using Aggrecan (Acan)-creERT transgenic mice.

View Article and Find Full Text PDF

This study queried the role of type V collagen in the post-natal growth of temporomandibular joint (TMJ) condylar cartilage, a hybrid tissue with a fibrocartilage layer covering a secondary hyaline cartilage layer. Integrating outcomes from histology, immunofluorescence imaging, electron microscopy and atomic force microscopy-based nanomechanical tests, we elucidated the impact of type V collagen reduction on TMJ condylar cartilage growth in the type V collagen haploinsufficiency and inducible knockout mice. Reduction of type V collagen led to significantly thickened collagen fibrils, decreased tissue modulus, reduced cell density and aberrant cell clustering in both the fibrous and hyaline layers.

View Article and Find Full Text PDF

The incredible mechanical strength and durability of mature fibrous tissues and their extremely limited turnover and regenerative capacity underscores the importance of proper matrix assembly during early postnatal growth. In tissues with composite extracellular matrix (ECM) structures, such as the adult knee meniscus, fibrous (Collagen-I rich), and cartilaginous (Collagen-II, proteoglycan-rich) matrix components are regionally segregated to the outer and inner portions of the tissue, respectively. While this spatial variation in composition is appreciated to be functionally important for resisting complex mechanical loads associated with gait, the establishment of these specialized zones is poorly understood.

View Article and Find Full Text PDF

Meniscal tears are associated with a high risk of osteoarthritis but currently have no disease-modifying therapies. Using a Gli1 reporter line, we found that Gli1 cells contribute to the development of meniscus horns from 2 weeks of age. In adult mice, Gli1 cells resided at the superficial layer of meniscus and expressed known mesenchymal progenitor markers.

View Article and Find Full Text PDF

Previous studies on mouse embryo limbs have established that interzone mesenchymal progenitor cells emerging at each prescribed joint site give rise to joint tissues over fetal time. These incipient tissues undergo structural maturation and morphogenesis postnatally, but underlying mechanisms of regulation remain unknown. Hox11 genes dictate overall zeugopod musculoskeletal patterning and skeletal element identities during development.

View Article and Find Full Text PDF

The growth plates are key engines of skeletal development and growth and contain a top reserve zone followed by maturation zones of proliferating, prehypertrophic, and hypertrophic/mineralizing chondrocytes. Trauma or drug treatment of certain disorders can derange the growth plates and cause accelerated maturation and premature closure, one example being anti-hedgehog drugs such as LDE225 (Sonidegib) used against pediatric brain malignancies. Here we tested whether such acceleration and closure in LDE225-treated mice could be prevented by co-administration of a selective retinoid antagonist, based on previous studies showing that retinoid antagonists can slow down chondrocyte maturation rates.

View Article and Find Full Text PDF

Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF-β family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3).

View Article and Find Full Text PDF

The temporomandibular joint (TMJ) is an intricate structure composed of the mandibular condyle, articular disc, and glenoid fossa in the temporal bone. Apical condylar cartilage is classified as a secondary cartilage, is fibrocartilaginous in nature, and is structurally distinct from growth plate and articular cartilage in long bones. Condylar cartilage is organized in distinct cellular layers that include a superficial layer that produces lubricants, a polymorphic/progenitor layer that contains stem/progenitor cells, and underlying layers of flattened and hypertrophic chondrocytes.

View Article and Find Full Text PDF

The joints are a diverse group of skeletal structures, and their genesis, morphogenesis, and acquisition of specialized tissues have intrigued biologists for decades. Here we review past and recent studies on important aspects of joint development, including the roles of the interzone and morphogenesis of articular cartilage. Studies have documented the requirement of interzone cells in limb joint initiation and formation of most, if not all, joint tissues.

View Article and Find Full Text PDF

Long bone development involves the embryonic formation of a primary ossification center (POC) in the incipient diaphysis followed by postnatal development of a secondary ossification center (SOC) at each epiphysis. Studies have elucidated major basic mechanisms of POC development, but relatively little is known about SOC development. To gain insights into SOC formation, we used Col2-Cre Rosa-tdTomato (Col2/Tomato) reporter mice and found that their periarticular region contained numerous Tomato-positive lineage cells expressing much higher Tomato fluorescence (termed Tomato ) than underlying epiphyseal chondrocytes (termed Tomato ).

View Article and Find Full Text PDF

Background/aim: Retinoid signaling is important for the maturation of growth-plate chondrocytes. The effect of retinoid receptor gamma (RARγ) signaling on the expression of genes in hypertrophic chondrocytes is unclear. This study investigated the role of RARγ signaling in regulation of hypertrophic chondrocyte-specific genes.

View Article and Find Full Text PDF

Condylar articular cartilage in mouse temporomandibular joint develops from progenitor cells near the articulating surface that proliferate, undergo chondrogenesis and mature into hypertrophic chondrocytes. However, it remains unclear how these processes are regulated, particularly postnatally. Here we focused on the apical polymorphic layer rich in progenitors and asked whether the phenotype and fate of the cells require signaling by Indian hedgehog (Ihh) previously studied in developing long bones.

View Article and Find Full Text PDF

This study aims to quantify the biomechanical properties of murine temporomandibular joint (TMJ) articular disc and condyle cartilage using AFM-nanoindentation. For skeletally mature, 3-month old mice, the surface of condyle cartilage was found to be significantly stiffer (306±84kPa, mean±95% CI) than those of the superior (85±23kPa) and inferior (45±12kPa) sides of the articular disc. On the disc surface, significant heterogeneity was also detected across multiple anatomical sites, with the posterior end being the stiffest and central region being the softest.

View Article and Find Full Text PDF

Hereditary Multiple Exostoses (HME) is a rare pediatric disorder caused by loss-of-function mutations in the genes encoding the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. HME is characterized by formation of cartilaginous outgrowths-called osteochondromas- next to the growth plates of many axial and appendicular skeletal elements. Surprisingly, it is not known whether such tumors also form in endochondral elements of the craniofacial skeleton.

View Article and Find Full Text PDF

Limb synovial joints are composed of distinct tissues, but it is unclear which progenitors produce those tissues and how articular cartilage acquires its functional postnatal organization characterized by chondrocyte columns, zone-specific cell volumes and anisotropic matrix. Using novel Gdf5 (Gdf5-CE), Prg4-CE and Dkk3-CE mice mated to R26-Confetti or single-color reporters, we found that knee joint progenitors produced small non-migratory progenies and distinct local tissues over prenatal and postnatal time. Stereological imaging and quantification indicated that the columns present in juvenile-adult tibial articular cartilage consisted of non-daughter, partially overlapping lineage cells, likely reflecting cell rearrangement and stacking.

View Article and Find Full Text PDF

The synchronization of cell proliferation and cytodifferentiation between dental epithelial and mesenchymal cells is required for the morphogenesis of teeth with the correct functional shapes and optimum sizes. Epiprofin (Epfn), a transcription factor belonging to the Sp family, regulates dental epithelial cell proliferation and is essential for ameloblast and odontoblast differentiation. Epfn deficiency results in the lack of enamel and ironically the formation of extra teeth.

View Article and Find Full Text PDF

The temporomandibular joint (TMJ) is a diarthrodial joint that relies on lubricants for frictionless movement and long-term function. It remains unclear what temporal and causal relationships may exist between compromised lubrication and onset and progression of TMJ disease. Here we report that Proteoglycan 4 (Prg4)-null TMJs exhibit irreversible osteoarthritis-like changes over time and are linked to formation of ectopic mineralized tissues and osteophytes in articular disc, mandibular condyle and glenoid fossa.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3g4f7l56ubuscbu1r9reg70vbfn6d16l): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once