Publications by authors named "Eike Budinger"

Long-standing questions about human brain evolution may only be resolved through comparisons with close living evolutionary relatives, such as chimpanzees. This applies in particular to structural white matter (WM) connectivity, which continuously expanded throughout evolution. However, due to legal restrictions on chimpanzee research, neuroscience research currently relies largely on data with limited detail or on comparisons with evolutionarily distant monkeys.

View Article and Find Full Text PDF

Neocortical layer 6 (L6) is less understood than other more superficial layers, largely owing to limitations of performing high-resolution investigations . Here, we show that labeling with the Challenge Virus Standard (CVS) rabies virus strain enables high-quality imaging of L6 neurons by conventional two-photon microscopes. CVS virus injection into the medial geniculate body can selectively label L6 neurons in the auditory cortex.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces StandardRat, a standardized fMRI acquisition protocol for rats that has been tested across 20 research centers to enhance data integration.
  • * The standardized protocol and processing pipeline improve the reliability of detecting functional connectivity patterns and are made publicly available to foster collaboration in the neuroimaging field.
View Article and Find Full Text PDF

Functional hemispheric lateralization is a basic principle of brain organization. In the auditory domain, the right auditory cortex (AC) determines the pitch direction of continuous auditory stimuli whereas the left AC discriminates gaps in these stimuli. The involved functional interactions between the two sides, mediated by commissural connections, are poorly understood.

View Article and Find Full Text PDF

Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns.

View Article and Find Full Text PDF

In the adult vertebrate brain, enzymatic removal of the extracellular matrix (ECM) is increasingly recognized to promote learning, memory recall, and restorative plasticity. The impact of the ECM on translaminar dynamics during cortical circuit processing is still not understood. Here, we removed the ECM in the primary auditory cortex (ACx) of adult Mongolian gerbils using local injections of hyaluronidase (HYase).

View Article and Find Full Text PDF

Multisensory integration in primary auditory (A1), visual (V1), and somatosensory cortex (S1) is substantially mediated by their direct interconnections and by thalamic inputs across the sensory modalities. We have previously shown in rodents (Mongolian gerbils) that during postnatal development, the anatomical and functional strengths of these crossmodal and also of sensory matched connections are determined by early auditory, somatosensory, and visual experience. Because supragranular layer III pyramidal neurons are major targets of corticocortical and thalamocortical connections, we investigated in this follow-up study how the loss of early sensory experience changes their dendritic morphology.

View Article and Find Full Text PDF

The auditory system comprises some very large axonal terminals like the endbulb and calyx of Held and "giant" corticothalamic synapses. Previously, we described a hitherto unknown population of giant thalamocortical boutons arising from the medial division of the medial geniculate body (MGm) in the Mongolian gerbil, which terminate over a wide cortical range but in a columnar manner particularly in the extragranular layers of the auditory cortex. As a first step towards an understanding of their potential functional role, we here describe their ultrastructure combining anterograde tract-tracing with biocytin and electron microscopy.

View Article and Find Full Text PDF

Despite vast literature on catecholaminergic neuromodulation of auditory cortex functioning in general, knowledge about its role for long-term memory formation is scarce. Our previous pharmacological studies on cortex-dependent frequency-modulated tone-sweep discrimination learning of Mongolian gerbils showed that auditory-cortical D -dopamine receptor activity facilitates memory consolidation and anterograde memory formation. Considering overlapping functions of D -dopamine receptors and β-adrenoceptors, we hypothesised a role of β-adrenergic signalling in the auditory cortex for sweep discrimination learning and memory.

View Article and Find Full Text PDF

Objectives: We assessed the use of high-resolution ultra-high-field diffusion magnetic resonance imaging (dMRI) to determine neuronal fiber orientation density functions (fODFs) throughout the human brain, including gray matter (GM), white matter (WM), and small intertwined structures in the cerebellopontine region.

Materials And Methods: We acquired 7-T whole-brain dMRI data of 23 volunteers with 1.4-mm isotropic resolution; fODFs were estimated using constrained spherical deconvolution.

View Article and Find Full Text PDF

This study tested the hypothesis that spiking activity in the primary auditory cortex of monkeys is related to auditory stream formation. Evidence for this hypothesis was previously obtained in animals that were passively exposed to stimuli and in which differences in the streaming percept were confounded with differences between the stimuli. In this study, monkeys performed an operant task on sequences that were composed of light flashes and tones.

View Article and Find Full Text PDF

Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase.

View Article and Find Full Text PDF

During aging, human response times (RTs) to unisensory and crossmodal stimuli decrease. However, the elderly benefit more from crossmodal stimulus representations than younger people. The underlying short-latency multisensory integration process is mediated by direct crossmodal connections at the level of primary sensory cortices.

View Article and Find Full Text PDF

The nervous system integrates information from multiple senses. This multisensory integration already occurs in primary sensory cortices via direct thalamocortical and corticocortical connections across modalities. In humans, sensory loss from birth results in functional recruitment of the deprived cortical territory by the spared senses but the underlying circuit changes are not well known.

View Article and Find Full Text PDF

A new stereotaxic brain atlas of the Mongolian gerbil (Meriones unguiculatus), an important animal model in neurosciences, is presented. It combines high-quality histological material for identification of brain structures with reliable stereotaxic coordinates. The atlas consists of high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) of 62 rostro-caudal levels at intervals of 350 μm.

View Article and Find Full Text PDF
Article Synopsis
  • The Jacob protein, encoded by the Nsmf gene, is essential for synapto-nuclear signaling and affects gene expression related to neuronal development, particularly in the context of Kallmann syndrome (KS).
  • Mice lacking the Nsmf gene exhibit abnormal hippocampal development, characterized by reduced synapse numbers, dendrite simplification, impaired long-term potentiation, and deficits in learning, without showing KS traits.
  • The absence of Jacob disrupts a feedback loop involving BDNF signaling and CREB activation, affecting Bdnf gene transcription and leading to hippocampal dysplasia during early neuronal development.
View Article and Find Full Text PDF

Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity- and trafficking-relevant site Thr(788/789) of β1-integrin to stimulate the PKC- and CaMKII-dependent activation of β1-integrins, as well as their exocytosis.

View Article and Find Full Text PDF

Knowledge of the anatomical organization of the auditory thalamocortical (TC) system is fundamental for the understanding of auditory information processing in the brain. In the Mongolian gerbil (Meriones unguiculatus), a valuable model species in auditory research, the detailed anatomy of this system has not yet been worked out in detail. Here, we investigated the projections from the three subnuclei of the medial geniculate body (MGB), namely, its ventral (MGv), dorsal (MGd), and medial (MGm) divisions, as well as from several of their subdivisions (MGv: pars lateralis [LV], pars ovoidea [OV], rostral pole [RP]; MGd: deep dorsal nucleus [DD]), to the auditory cortex (AC) by stereotaxic pressure injections and electrophysiologically guided iontophoretic injections of the anterograde tract tracer biocytin.

View Article and Find Full Text PDF

Multisensory integration does not only recruit higher-level association cortex, but also low-level and even primary sensory cortices. Here, we will describe and quantify two types of anatomical pathways, a thalamocortical and a corticocortical that possibly underlie short-latency multisensory integration processes in the primary auditory (A1), somatosensory (S1), and visual cortex (V1). Results were obtained from Mongolian gerbils, a common model-species in neuroscience, using simultaneous injections of different retrograde tracers into A1, S1, and V1.

View Article and Find Full Text PDF

Purpose: To compare the sensitivity and specificity of phase imaging (PI) with other magnetic resonance imaging (MRI) methods in lesion detection in rats with experimental autoimmune encephalomyelitis (EAE), as an animal model for multiple sclerosis (MS).

Materials And Methods: EAE was induced in rats (n = 14) by subcutaneous (s.c.

View Article and Find Full Text PDF

Synchronized neuronal firing in cortex has been implicated in feature binding, attentional selection, and other cognitive processes. This study addressed the question whether different cortical fields are distinct by rules according to which neurons engage in synchronous firing. To this end, we simultaneously recorded the multiunit firing at several sites within the primary and the caudomedial auditory cortical field of anesthetized macaque monkeys, determined their responses to pure tones, and calculated the cross-correlation function of the spontaneous firing of pairs of units.

View Article and Find Full Text PDF

We investigated the frequency-related topography of connections of the primary auditory cortical field (AI) in the Mongolian gerbil with subcortical structures of the auditory system by means of the axonal transport of two bidirectional tracers, which were simultaneously injected into regions of AI with different best frequencies (BFs). We found topographic, most likely frequency-matched (tonotopic) connections as well as non-topographic (non-tonotopic) connections. AI projects in a tonotopic way to the ipsilateral ventral (MGv) and dorsal divisions (MGd) of the medial geniculate body (MGB), the reticular thalamic nucleus and dorsal nucleus of the lateral lemniscus, and the ipsi- and contralateral dorsal cortex of the inferior colliculus (IC) and central nucleus of the IC.

View Article and Find Full Text PDF

Recent electrophysiological studies have reported short latency modulations in cortical regions for multisensory stimuli, thereby suggesting a subcortical, possibly thalamic origin of these modulations. Concurrently, there is an ongoing debate, whether multisensory interplay reflects automatic, bottom-up driven processes or relies on top-down influences. Here, we dissociated the effects of task set and stimulus configurations on BOLD-signals in the human thalamus with event-related functional magnetic resonance imaging (fMRI).

View Article and Find Full Text PDF