Publications by authors named "Eiji Yoshimi"

Nerve growth factor (NGF) has emerged as a key driver of pain perception in several chronic pain conditions, including osteoarthritis (OA), and plays an important role in the generation and survival of neurons. Although anti-NGF antibodies improve pain control and physical function in patients with clinical chronic pain conditions, anti-NGF IgGs are associated with safety concerns such as effects on fetal and postnatal development and the risk of rapidly progressive osteoarthritis. To overcome these drawbacks, we generated a novel anti-NGF PEGylated Fab' antibody.

View Article and Find Full Text PDF

Pain and emotional distress have a reciprocal relation. The amygdala has been implicated in emotional processing. The central nucleus of the amygdala (CeA) receives nociceptive information from the dorsal horn of spinal cord and is responsible for the central plasticity in chronic pain.

View Article and Find Full Text PDF

The reserpine-induced myalgia (RIM) rat manifests fibromyalgia-like chronic pain symptoms. The present study explored the pathophysiology underlying the pain symptoms in the RIM rat and the chronic constriction injury (CCI) rat, an animal model of neuropathic pain as a reference. Nerve tissue samples were collected from the nociception-tested animals for pathological examinations.

View Article and Find Full Text PDF

Nonsteroidal anti-inflammatory drugs (NSAIDs) are now understood to fall into one of two agent classes in clinical use. Traditional NSAIDs inhibit both cyclooxygenases-1 and 2 (COX-1, 2), which act as key enzymes catalyzing the same reaction in the production of prostaglandins (PGs), while the second class of NSAIDs selectively inhibit COX-2. Inhibition of the inducible COX-2 isoform is believed to be responsible for the therapeutic effects of NSAIDs, such as anti-inflammatory, analgesic, and antipyretic effects, while COX-1 inhibition results in side-effects on the gastrointestinal (GI) system.

View Article and Find Full Text PDF

The effects of AS1892802, a selective Rho-associated coiled coil kinase (ROCK) inhibitor, on knee cartilage damage and pain behavior were examined in a rat model of osteoarthritis (OA). Monoiodoacetate (MIA) was intraarticularly injected into the right knee joints of rats. ROCK I and II mRNA levels increased in knee joints of MIA-injected rats.

View Article and Find Full Text PDF

To assess the pharmacological profile of AS1892802, a novel and selective Rho kinase (ROCK) inhibitor, we examined the effects of repeated dosing with AS1892802 on models of monoiodoacetate-induced arthritis and streptozotocin-induced neuropathy. Although single dosing of AS1892802 exerted a short-acting, moderate analgesic effect, repeated dosing exhibited a long-lasting and more potent analgesic effect in both models. Furthermore, the analgesic effect was sustained for seven days after the last administration.

View Article and Find Full Text PDF

Rho kinase (ROCK) is involved in various physiological functions, including cell motility, vasoconstriction, and neurite extension. Although a functional role of ROCK in nociception in the central nervous tissue has been reported in neuropathy, the peripheral function of this protein in hyperalgesia is not known. In this study, antinociceptive effects of AS1892802 [1-[(1S)-2-hydroxy-1-phenylethyl]-3-[4-(pyridin-4-yl)phenyl]urea], a novel and highly selective ROCK inhibitor, were investigated in two rat models of arthritis.

View Article and Find Full Text PDF