Functional relationships between endogenous levels of plant hormones in the growth and development of shoots in etiolated Alaska pea and etiolated Golden Cross Bantam maize seedlings under different gravities were investigated in the "Auxin Transport" experiment aboard the International Space Station (ISS). Comprehensive analyses of 31 species of plant hormones of pea and maize seedlings grown under microgravity (μg) in space and 1 g conditions were conducted. Principal component analysis (PCA) and a multiple regression analysis with the dataset from the plant hormone analysis of the etiolated pea seedlings grown under μg and 1 g conditions in the presence and absence of 2,3,5-triiodobenzoic acid (TIBA) revealed endogenous levels of auxin correlated positively with bending and length of epicotyls.
View Article and Find Full Text PDFThis paper introduces the use of microarray data technology with Medicago (Medicago truncatula) microarrays to characterize global changes in the transcript abundance of etiolated Alaska pea (Pisum sativum L.) seedlings grown under microgravity (µg) conditions in comparison with those under artificial 1 g conditions on the International Space Station. Of the 44,000 genes of the Medicago microarray platform, more than 25,000 transcripts of pea seedlings were hybridized, suggesting that the microarray platform for Medicago could be useful in the study of gene expression of etiolated pea seedlings grown under µg conditions in space.
View Article and Find Full Text PDFTo clarify the mechanism of gravity-controlled polar auxin transport, we conducted the International Space Station (ISS) experiment "Auxin Transport" (identified by NASA's operation nomenclature) in 2016 and 2017, focusing on the expression of genes related to auxin efflux carrier protein PsPIN1 and its localization in the hook and epicotyl cells of etiolated Alaska pea seedlings grown for three days in the dark under microgravity (μg) and artificial 1 g conditions on a centrifuge in the Cell Biology Experiment Facility (CBEF) in the ISS, and under 1 g conditions on Earth. Regardless of gravity conditions, the accumulation of PsPIN1 mRNA in the proximal side of epicotyls of the seedlings was not different, but tended to be slightly higher as compared with that in the distal side. 2,3,5-Triiodobenzoic acid (TIBA) also did not affect the accumulation of PsPIN1 mRNA in the proximal and distal sides of epicotyls.
View Article and Find Full Text PDFWe conducted "Auxin Transport" space experiments in 2016 and 2017 in the Japanese Experiment Module (JEM) on the International Space Station (ISS), with the principal objective being integrated analyses of the growth and development of etiolated pea (Pisum sativum L. cv Alaska) and maize (Zea mays L. cv Golden Cross Bantam) seedlings under true microgravity conditions in space relative to auxin dynamics.
View Article and Find Full Text PDFThe mechanism by which gravity controls the polar transport of auxin, a plant hormone regulating multiple physiological processes in higher plants, remains unclear, although an important role of PIN proteins as efflux carriers/facilitators in polar auxin transport is suggested. We are going to study the effect of microgravity on the polar transport of auxin, focusing on the cellular localization of its efflux carrier, PsPIN1 in etiolated pea seedlings and ZmPIN1a in etiolated maize seedlings grown under microgravity conditions on the International Space Station (ISS) using immunohistochemical analyses according to space experimental plans (Ueda, 2016). To obtain adequate results regarding the cellular localization of functional proteins, prolonged chemical fixation processes as well as chemical fixatives should be well-matched to the properties of functional proteins as antigens since experimental analyses will be performed on the ground after keeping samples for a long duration on the ISS.
View Article and Find Full Text PDFAzolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants.
View Article and Find Full Text PDFThe formation of the apical hook in dicotyledonous seedlings is believed to be effected by gravity in the dark. However, this notion is mostly based on experiments with the hook formed on the hypocotyl, and no detailed studies are available with the developmental manners of the hook, particularly of the epicotyl hook. The present study aims at clarifying the dynamics of hook formation including the possible involvement of gravity.
View Article and Find Full Text PDFIn studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.
View Article and Find Full Text PDFIn the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.
View Article and Find Full Text PDFPlant Cell Physiol
August 2004
Immunoelectron microscopy and a quantitative analysis of immunogold labeling of a glutamine synthetase (GS; EC 6.3.1.
View Article and Find Full Text PDFA NADPH-dependent carbonyl reductase (CSCR1) was purified to homogeneity from Cylindrocarpon sclerotigenum IFO 31855. The enzyme catalyzed the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to the corresponding (S)-alcohol with a >99% enantiomer excess. The relative molecular mass of the enzyme was estimated to be 68,000 by gel filtration chromatography and 24,800 on SDS polyacrylamide gel electrophoresis.
View Article and Find Full Text PDF