Here, we develop a robust approach to forming an ∼8 nm thick cellulose nanofiber (CNF) shell on polymer microparticles through an emulsion-templated assembly. The median diameter of the CNF-shelled microparticles was 3.0 μm.
View Article and Find Full Text PDFSci Technol Adv Mater
November 2017
Pickering emulsion, which is an emulsion stabilized by solid particles, offers a wide range of potential applications because it generally provides a more stable system than surfactant-stabilized emulsion. Among various solid stabilizers, nanocellulose may open up new opportunities for future Pickering emulsions owing to its unique nanosizes, amphiphilicity, and other favorable properties (e.g.
View Article and Find Full Text PDFCellulose nanofibers (CNFs), which are directly isolated as a native form, have drawn considerable attention as eco-friendly and distinctive material to be partly substituted for fossil products. In addition to the increasing attention to the native CNFs, conventional regenerated cellulose having cellulose II crystals also attracts more attention because of its cost-effective method of production in a moderately easy and repeatable fashion. Inter- and intramolecular hydrogen bonds are, in particular, thought to contribute greatly to the physical properties of cellulosic commercial products.
View Article and Find Full Text PDFCellulose nanofibril (CNF) is a promising nanofiller for polymer nanocomposite materials, and a critical challenge in designing these materials is organization of the nanostructure using a facile process. Here, we report a facile aqueous preparation process for nanostructured polystyrene (PS)/CNF composites via the formation of a CNF-stabilized Pickering emulsion. PS nanoparticles, with a narrow size distribution, were synthesized by free radical polymerization in water using CNF as a stabilizer.
View Article and Find Full Text PDFPolymerization of aniline in the presence of cellulose nano-fiber (CNF) is carried out. We used dried CNF, CNF suspension, and CNF treated by enzyme and ultra-sonification to obtain polyaniline (PANI)/CNF as a synthetic polymer/natural nano-polymer composite. The polymerization proceeds on the surface of CNF as a nano-reaction field.
View Article and Find Full Text PDFThe thermal expansion behaviors of A-type and B-type amylose crystals, which were prepared by recrystallization of short amylose chains synthesized by phosphorylase, were investigated using synchrotron X-ray powder diffraction between 100 and 300K. For both types of crystals, the room-temperature phase (RT phase), which is the usually observed phase, transitioned to a low-temperature phase (LT phase), on cooling. The phase transitions took place reversibly with rapid changes in the unit-cell parameters around 200-270K.
View Article and Find Full Text PDFThe purpose of our research is creating a new nanocomposite material. Generally silk fibroin (SF) is regarded as a promising base material for biomedical uses. The incorporation of montmorillonite (MMT) into SF fibers would improve physical properties of the SF fibers.
View Article and Find Full Text PDFThe thermal expansion behavior of hydrate paramylon between 100 and 300K has been investigated using synchrotron X-ray powder diffraction. The X-ray diffraction profile at 300K showed a typical pattern of the hydrate triple helical (1→3)-β-d-glucan with a hexagonal unit cell (a=15.782Å and c=18.
View Article and Find Full Text PDFGluconacetobacter xylinus, a gram-negative bacterium that synthesizes and extrudes a cellulose nanofiber in SH media moves in random manners, resulting in 3D-network structure of the secreted nanofibers termed a pellicle. In this study, the bacterial movement was successfully regulated to be in a waving manner when cultured on ordered templates made of chitin. Interestingly, by addition of more cellulose into the chitin ordered templates, the waving pattern was getting close to a linear or straight manner.
View Article and Find Full Text PDFThe ability to synthesize cellulose by Asaia bogorensis, a member of the acetic acid bacteria, was studied in two substrains, AJ and JCM. Although both strains have identical 16S rDNA sequence, only the AJ strain formed a solid pellicle at the air-liquid interface in static culture medium, and we analyzed this pellicle using a variety of techniques. In the presence of cellulase, glucose and cellobiose were released from the pellicle suggesting that it is made of cellulose.
View Article and Find Full Text PDFComplete amino acid sequences of the four major proteins (Vssilk 1-4) of silk (hornet silk) obtained from yellow hornet ( Vespa simillima , Vespinae, Vespidae) cocoons have been determined. The native structure of the hornet silk (HS), in which Vssilk 1-4 have an alpha-helix domain with coiled-coil alpha-helices and a beta-sheet domain, is restored when hornet silk gel films (HSGFs) are formed by pressing and drying HS hydrogel. Necking occurs when dry HSGFs are drawn; however, wet HSGFs can be uniaxially drawn with a draw ratio (DR) of 2.
View Article and Find Full Text PDFVarietal differences among ten rice cultivars showed that stem diameter is a key factor in lodging resistance (measured in terms of pushing resistance). Two near-isogenic lines (NILs) were selected from a series of chromosome segment substitution lines developed between cultivars Nipponbar and Kasalath, one containing a single stem diameter QTL (sdm8; NIL114), and another with four stem diameter QTLs (sdm1, sdm7, sdm8, sdm12; NIL28). Compared with the Nipponbare control, stem diameters were larger in NIL114 and NIL28 by about 7 and 39%, respectively.
View Article and Find Full Text PDFWe demonstrated the new target for lodging resistance in rice (Oryza sativa L.) by the analysis of physiological function of a locus for lodging resistance in a typhoon (lrt5) with the near isogenic line under rice "Koshihikari" genetic background (tentatively named S1). The higher lodging resistance of S1 was observed during a typhoon in September 2004 (28 days after heading), when most other plants in "Koshihikari" became lodged.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2002
Biodirected epitaxial nanodeposition of polymers was achieved on a template with an oriented molecular surface. Acetobacter xylinum synthesized a ribbon of cellulose I microfibrils onto a fixed, nematic ordered substrate of glucan chains with unique surface characteristics. The substrate directed the orientation of the motion due to the inverse force of the secretion during biosynthesis, and the microfibrils were aligned along the orientation of the molecular template.
View Article and Find Full Text PDF