Twistronics, a novel engineering approach involving the alignment of van der Waals (vdW) integrated two-dimensional materials at specific angles, has recently attracted significant attention. Novel nontrivial phenomena have been demonstrated in twisted vdW junctions (the so-called magic angle), such as unconventional superconductivity, topological phases, and magnetism. However, there have been only few reports on integrated vdW layers with large twist angles θ, such as twisted interfacial Josephson junctions using high-temperature superconductors.
View Article and Find Full Text PDFAtom-vacancy-defects present in various materials yield numerous interesting physical phenomena, even obstructing high performance in some cases. On the other hand, their valuable applications to novel devices, such as nitrogen vacancy centers in diamond for quantum bits, have gathered significant attention. In particular, these tendencies become more substantial in two-dimensional (2D) (atomically) thin van der Waals layers.
View Article and Find Full Text PDFThermoelectric effects refer to the voltage generation from temperature gradients in condensed matter. Although various power generators are made from them, all the known effects, such as Seebeck effect, require macroscopic temperature gradients; since the sign of the generated voltage is reversed by reversing the temperature gradient, the net voltage disappears when the temperature distribution fluctuates temporarily or spatially with a macroscopic temperature gradient of zero. It is impossible to utilize such temperature fluctuations in the conventional thermoelectric effects, a situation which limits their application.
View Article and Find Full Text PDFSrTiO (STO) substrate, a perovskite oxide material known for its high dielectric constant (ɛ), facilitates the observation of various (high-temperature) quantum phenomena. A quantum Hall topological insulating (QHTI) state, comprising two copies of QH states with antiparallel two ferromagnetic edge-spin overlap protected by the U(1) axial rotation symmetry of spin polarization, has recently been achieved in low magnetic field (B) even as high as ≈100 K in a monolayer graphene/thin hexagonal boron nitride (hBN) spacer placed on an STO substrate, thanks to the high ɛ of STO. Despite the use of the heavy STO substrate, however, proximity-induced quantum spin Hall (QSH) states in 2D TI phases, featuring a topologically protected helical edge spin phase within time-reversal-symmetry, is not confirmed.
View Article and Find Full Text PDFWe have developed experimental equipment for observing the Barnett effect, in which mechanical rotation magnetizes an object, at low temperatures. A sample in a rotor is rotated bidirectionally using a temperature-controlled high-pressure gas. The stray field generated from the sample due to the Barnett effect was detected using a fluxgate magnetic sensor with a sensitivity on the order of several picoteslas, even at low temperatures.
View Article and Find Full Text PDFWe experimentally and theoretically demonstrate that nonlinear spin-wave interactions suppress the hybrid magnon-photon quasiparticle or "magnon polariton" in microwave spectra of a yttrium iron garnet film detected by an on-chip split-ring resonator. We observe a strong coupling between the Kittel and microwave cavity modes in terms of an avoided crossing as a function of magnetic fields at low microwave input powers, but a complete closing of the gap at high powers. The experimental results are well explained by a theoretical model including the three-magnon decay of the Kittel magnon into spin waves.
View Article and Find Full Text PDFWhen a thermoelectric (TE) material is deposited with a secondary TE material, the total Seebeck coefficient of the stacked layer is generally represented by a parallel conductor model. Accordingly, when TE material layers of the same thickness are stacked vertically, the total Seebeck coefficient in the transverse direction may change in a single layer. Here, an abnormal Seebeck effect in a stacked two-dimensional (2D) PtSe /PtSe homostructure film, i.
View Article and Find Full Text PDFWhen the electric conductance of a nano-sized metal is measured at low temperatures, it often exhibits complex but reproducible patterns as a function of external magnetic fields called quantum fingerprints in electric conductance. Such complex patterns are due to quantum-mechanical interference of conduction electrons; when thermal disturbance is feeble and coherence of the electrons extends all over the sample, the quantum interference pattern reflects microscopic structures, such as crystalline defects and the shape of the sample, giving rise to complicated interference. Although the interference pattern carries such microscopic information, it looks so random that it has not been analysed.
View Article and Find Full Text PDFThe interplay among magnetization and deformation of solids has long been an important issue in magnetism, the elucidation of which has made great progress in material physics. Controlling volume and shapes of matter is now indispensable to realizing various actuators for precision machinery and nanotechnology. Here, we show that the volume of a solid can be manipulated by injecting a spin current: a spin current volume effect (SVE).
View Article and Find Full Text PDFThe Seebeck effect refers to the production of an electric voltage when different temperatures are applied on a conductor, and the corresponding voltage-production efficiency is represented by the Seebeck coefficient. We report a Seebeck effect: thermal generation of driving voltage from the heat flowing in a thin PtSe/PtSe van der Waals homostructure at the interface. We refer to the effect as the interface-induced Seebeck effect.
View Article and Find Full Text PDFA recent study found that magnetization curves for YFeO (YIG) slab and thick films (>20 μm thick) differed from bulk system curves by their longitudinal spin Seebeck effect in a Pt/YIG bilayer system. The deviation was due to intrinsic YIG surface magnetic anisotropy, which is difficult to adopt extrinsic surface magnetic anisotropy even when in contact with other materials on the YIG surface. This study experimentally demonstrates evidence for extrinsic YIG surface magnetic anisotropy when in contact with a diamagnetic graphene interlayer by observing the spin Seebeck effect, directly proving intrinsic YIG surface magnetic anisotropy interruption.
View Article and Find Full Text PDFA triplon refers to a fictitious particle that carries angular momentum S=1 corresponding to the elementary excitation in a broad class of quantum dimerized spin systems. Such systems without magnetic order have long been studied as a testing ground for quantum properties of spins. Although triplons have been found to play a central role in thermal and magnetic properties in dimerized magnets with singlet correlation, a spin angular momentum flow carried by triplons, a triplon current, has not been detected yet.
View Article and Find Full Text PDFHigh efficiency thermoelectric (TE) materials still require high thermopower for energy harvesting applications. A simple elemental metallic semiconductor, tellurium (Te), has been considered critical to realize highly efficient TE conversion due to having a large effective band valley degeneracy. This paper demonstrates a novel approach to directly probe the out-of-plane Seebeck coefficient for one-dimensional Te quantum wires (QWs) formed locally in the aluminum oxide layer by well-controlled electrical breakdown at 300 K.
View Article and Find Full Text PDFWe unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction.
View Article and Find Full Text PDFWe first observed the spin-to-charge conversion due to both the inverse Rashba-Edelstein effect (IREE) and inverse spin-Hall effect in a holey multilayer molybdenum disulfide (MoS) intermediate layer in a Pt/YIG structure via LSSE measurements under nonequilibrium magnetization. We found an enhancement of approximately 238%, 307%, and 290% in the longitudinal spin Seebeck effect (LSSE) voltage, spin-to-charge current, and thermoelectric (TE) power factor, respectively, compared with the monolayer MoS interlayer in a Pt/YIG structure. Such an enhancement in the LSSE performance of Pt/holey MoS/YIG can be explained by the improvement of spin accumulation in the Pt layer by induced spin fluctuation as well as increased additional spin-to-charge conversion due to in-plane IREE.
View Article and Find Full Text PDFThe voltage induced by the inverse spin Hall effect (ISHE) is affected by several factors, including the spin Hall angle of the normal metal (NM), the quality and magnetic properties of the ferromagnetic material (FM), and the interface conditions between the NM and FM bilayers in longitudinal spin Seebeck effect (LSSE) measurement. Specifically, the interface conditions in NM/FM systems via LSSE devices play a crucial role in determining the efficiency of spin current injection into the NM layer. In this letter, we report a new approach to controlling the efficiency of spin current injection into a Pt layer across a Pt/YFeO (YIG) interface by surface coverage of the intermediate layer.
View Article and Find Full Text PDFHalf-metallic Heusler alloys are attracting considerable attention because of their unique half-metallic band structures, which exhibit high spin polarization and yield huge magnetoresistance ratios. Besides serving as ferromagnetic electrodes, Heusler alloys also have the potential to host spin-charge conversion. Here, we report on the spin-charge conversion effect in the prototypical Heusler alloy NiMnSb.
View Article and Find Full Text PDFIn superconductors, a topological configuration of the superconducting order parameter called a superconducting vortex carries magnetization. Such a magnetic topological object behaves like a minute particle generating a magnetic flux. Since the flux is localized with a nanometer scale, the vortex provides a nano-scale probe for local magnetic fields.
View Article and Find Full Text PDFThe discovery of new materials that efficiently transmit spin currents has been important for spintronics and material science. The electric insulator GdGaO (GGG), a standard substrate for growing magnetic films, can be a spin current generator, but has never been considered as a superior conduit for spin currents. Here we report spin current propagation in paramagnetic GGG over several microns.
View Article and Find Full Text PDFInvestigating exotic magnetic materials with spintronic techniques is effective at advancing magnetism as well as spintronics. In this work, we report unusual field-induced suppression of the spin Seebeck effect (SSE) in a quasi-one-dimensional frustrated spin-1/2 magnet LiCuVO_{4}, known to exhibit spin-nematic correlation in a wide range of external magnetic field B. The suppression takes place above |B|≳2 T in spite of the B-linear isothermal magnetization curves in the same B range.
View Article and Find Full Text PDFWe propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a class of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role.
View Article and Find Full Text PDFElectric current has been used to send electricity to far distant places. On the other hand, spin current, a flow of electron spin, can in principle also send angular momentum to distant places. In a magnet, there is a universal spin carrier called a spin wave, a wave-type excitation of magnetization.
View Article and Find Full Text PDFWe investigate the intrinsic thermoelectric (TE) properties of the metal-diffused aluminum oxide (AO) layer in metal/AO/metal structures, where the metallic conducting filaments (CFs) were locally formed in the structures via an electrical breakdown (EBD) process as shown by resistive switching memory devices, by directly measuring cross-plane Seebeck coefficients on the CF-containing insulating AO layers. The results showed that the Seebeck coefficients of the CF-containing AO layer in metal/AO/metal structures were influenced by the generation of the metallic CFs, which is due to the diffusion of the metal into the insulating AO layers when exposed to a temperature gradient in the direction of the cross plane of the sample. In addition, the increase in the Seebeck coefficients of the CF-containing AO layer when the number of EBD-processed patterns was increased is satisfactorily explained by the low-energy carrier (i.
View Article and Find Full Text PDF