3-Hydroxytyrosol (HT) is a super antioxidant possessing many physiological advantages for human health. However, the extraction of natural HT from olive () is expensive, and its chemical synthesis presents an environmental burden. Therefore, microbial production of HT from renewable sources has been investigated over the past decade.
View Article and Find Full Text PDFThe industrial use of living organisms for bioproduction of valued substances has been accomplished mostly using microorganisms. To produce high-value bioproducts such as antibodies that require glycosylation modification for better performance, animal cells have been recently gaining attention in bioengineering because microorganisms are unsuitable for producing such substances. Furthermore, animal cells are now classified as products because a large number of cells are required for use in regenerative medicine.
View Article and Find Full Text PDFWith the current interest in cultured meat, mammalian cell-based meat has mostly been unstructured. There is thus still a high demand for artificial steak-like meat. We demonstrate in vitro construction of engineered steak-like tissue assembled of three types of bovine cell fibers (muscle, fat, and vessel).
View Article and Find Full Text PDFElectric pulse-stimulated C2C12 myotubes are gaining interest in the field of muscle physiology and biotechnology because electric pulse stimulation (EPS) enhances sarcomere structure development and active tension generation capability. Recently, we found that termination of EPS results in the rapid loss of active tension generation accompanied by disassembly of the sarcomere structure, which may represent an in vitro muscle atrophy model. To elucidate the molecular mechanism underlying this rapid loss of active tension generation and sarcomere structure disassembly after termination of EPS, we performed transcriptomic analysis using microarray.
View Article and Find Full Text PDFWe have studied the effects of hydrogen peroxide (HO) on the differentiation and maintenance of C2C12 myoblasts. The effects of HO were evaluated by cell viability, total protein concentration, the relative amount of muscle-related proteins, sarcomere structure, and active tension generation. Oxidative stress is one of the major causes of myopathy after exercise and thus establishing the method to evaluate the effects on muscle function is essential.
View Article and Find Full Text PDFMany phenylalanine- and tyrosine-producing strains have used plasmid-based overexpression of pathway genes. The resulting strains achieved high titers and yields of phenylalanine and tyrosine. Chromosomally engineered, plasmid-free producers have shown lower titers and yields than plasmid-based strains, but the former are advantageous in terms of cultivation cost and public health/environmental risk.
View Article and Find Full Text PDFAlthough various types of artificial skeletal muscle tissue have been reported, the contractile forces generated by tissue-engineered artificial skeletal muscles remain to be improved for biological model and clinical applications. In this study, we investigated the effects of extracellular matrix (ECM) and supplementation of a small molecule, which has been reported to enhance α7β1 integrin expression (SU9516), on cell migration speed, cell fusion rate, myoblast (mouse C2C12 cells) differentiation and contractile force generation of tissue-engineered artificial skeletal muscles. When cells were cultured on varying ECM coated-surfaces, we observed significant enhancement in the migration speed, while the myotube formation (differentiation ratio) decreased in all except for cells cultured on Matrigel coated-surfaces.
View Article and Find Full Text PDFMany metabolic engineering approaches have been attempted to generate strains capable of producing valuable compounds. One of main goals is industrial application of these strains. Integration of synthetic pathway genes into the Escherichia coli chromosome enables generation of a plasmid-free strain that is stable and useful for industrial applications.
View Article and Find Full Text PDFAggregate culture of human induced pluripotent stem cells (hiPSCs) is a promising method to obtain high number of cells for cell therapy applications. This study quantitatively evaluated the effects of initial cell number and culture time on the growth of hiPSCs in the culture of single aggregate. Small size aggregates ((1.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) secrete essential autocrine factors that are removed along with toxic metabolites when the growth medium is exchanged daily. In this study, after determining the minimum inhibitory level of lactic acid for hiPSCs, a medium refining system was constructed by which toxic metabolites were removed from used culture medium and autocrine factors as well as other growth factors were recycled. Specifically, about 87 % of the basic fibroblast growth factor and 80 % of transforming growth factor beta 1 were retained in the refined medium after dialysis.
View Article and Find Full Text PDFRhabdomyosarcoma (RMS) is a highly malignant tumor type of skeletal muscle origin, hallmarked by local invasion. Interaction between invasive tumor cells and normal cells plays a major role in tumor invasion and metastasis. Culturing tumor cells in a three-dimensional (3D) model can translate tumor malignancy relevant cell-cell interaction.
View Article and Find Full Text PDFElectrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS).
View Article and Find Full Text PDFUsing a cell sheet stacking method, we developed an in vitro culture system in which green fluorescent protein expressing human umbilical vein endothelial cells (GFP-HUVECs) were cultured under human skeletal muscle myoblast (HSMM) sheets with different layer numbers. Our aim in developing this system was to examine the different endothelial behaviors in the cell sheet. During 96 h of incubation, in monolayer HSMM sheet, HUVECs quickly reached the top of the cell sheet and detached.
View Article and Find Full Text PDFIn the present study, to elucidate mechanisms of growth suppression in YIBO-pdc1/5Δ, we performed carbon metabolic flux analysis under micro-aerobic conditions. Our results indicate that growth suppression of YIBO-pdc1/5Δ is caused by decreased flux to the pentose phosphate pathway, which supplies ribose-5-phosphate, a precursor for histidine synthesis in Sacchar omyces cerevisiae. In addition, significant accumulation of pyruvate was observed in the continuous culture.
View Article and Find Full Text PDFAutologous transplantation of myoblast sheet has attracted attention as a new technique for curing myocardial infarction. Myoblast sheet has the ability to secret cytokines that improve heart function via the facilitation of angiogenesis on affected part. To mimic the in vivo angiogenesis in the myoblast sheet after transplantation, a five-layered cell sheet of human skeletal muscle myoblasts (HSMMs) was overlaid on human umbilical vein endothelial cells (HUVECs) which enables evaluation of dynamic HUVEC behavior.
View Article and Find Full Text PDFJ Biosci Bioeng
February 2013
Skeletal muscle is the most abundant tissue in the body, and its capability of generating an active force is one of the most significant features. In order to study the physiology and disorders related to the skeletal muscle using cells in vitro, the active force should be evaluated, in addition to molecular and cell biological experiments performed. This article reviews an evaluation system for the active tension generated by cultured skeletal muscle cells or tissue-engineered skeletal muscles.
View Article and Find Full Text PDFA simple fed-batch system for cultivating genetically engineered yeast generating lactate under the regulation of the PDC1 promoter was established. Traditional strategies that avoid occurrence of Crabtree effect, such as respiratory quotient (RQ) control or ethanol control, are not applicable to the strain because of reduced generation of ethanol and CO(2) by-products. In this system, the feed rate increased when the pH was >5.
View Article and Find Full Text PDFThe procedure for fabricating a multilayered cell sheet has been developed by combining multiple sheets using a thermo-responsive surface and stamp system. Confocal laser scanning microscopy revealed that the fluidity of a multilayered sheet of skeletal myoblasts could be estimated as vertical diffusivity and changed upon addition of dermal fibroblasts.
View Article and Find Full Text PDFThe aim of this study was to investigate whether insulin-like growth factor (IGF)-I gene delivery to myoblast cells promotes the contractile force generated by hydrogel-based tissue-engineered skeletal muscles in vitro. Two retroviral vectors allowing doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into mouse myoblast C2C12 cells to evaluate the effects of IGF-I gene expression on these cells. IGF-I gene expression stimulated the proliferation of C2C12 cells, and a significant increase in the growth rate was observed for IGF-I-transduced C2C12 cells with Dox addition, designated C2C12/IGF (Dox+) cells.
View Article and Find Full Text PDFJ Muscle Res Cell Motil
December 2010
We found that the active tension of C2C12 myotubes that had been subjected to artificial exercise for ~10 days decreased rapidly after termination of the artificial exercise. When differentiated C2C12 myotubes were subjected to continuous 1 Hz artificial exercise for ~10 days, the active tension increased to ~4× compared to that before application of the artificial exercise, as reported previously. On termination of artificial exercise, the active tension decreased rapidly, the level reaching that before application of the artificial exercise within 8 h.
View Article and Find Full Text PDFWith the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm x 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels.
View Article and Find Full Text PDFSkeletal muscle tissue engineering is currently applied in a variety of research fields, including regenerative medicine, drug screening, and bioactuator development, all of which require the fabrication of biomimic and functional skeletal muscle tissues. In the present study, magnetite cationic liposomes were used to magnetically label C2C12 myoblast cells for the construction of three-dimensional artificial skeletal muscle tissues by an applied magnetic force. Skeletal muscle functions, such as biochemical and contractile properties, were evaluated for the artificial tissue constructs.
View Article and Find Full Text PDFWe have compared several serum-free media for the differentiation of C2C12 myoblasts and assessed the extent of differentiation in several ways including as to active tension generation capability. C2C12 cells were allowed to differentiate in Dulbecco's modified Eagle's medium (DMEM) containing Ham's F-12 (F-12), AIM-V (AIM), 0.2% Ultroser-G in DMEM (Ult-G), and 0.
View Article and Find Full Text PDF