Publications by authors named "Eiji Hase"

We propose a method for integrating confocal amplitude and phase images obtained through dual-comb microscopy (DCM). DCM combines the benefits of confocal laser microscopy and quantitative phase microscopy, offering high axial resolution and scan-less imaging. By leveraging the coherence between confocal amplitude and phase images within the same DCM system, we accurately determine the number of phase wrapping iterations, thereby eliminating ambiguity in phase wrapping.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs), also known as fibro-adipogenic progenitors, play a critical role in muscle maintenance and sarcopenia development. Although analogous MSCs are present in various tissues, recent single-cell RNA-seq studies have revealed the inter-tissue heterogeneity of MSCs. However, the functional significance of MSC heterogeneity and its role in aging remain unclear.

View Article and Find Full Text PDF

Spiral interferometry acquires the topography of the sample and determines the elevation or depression of the sample structure by a single measurement. The method has advantages in simple measurements and stable optical setup due to the coaxial interferometer. However, the measurable axial range was limited by the wavelength of the light.

View Article and Find Full Text PDF
Article Synopsis
  • - Liver fibrosis is traditionally evaluated using methods that only assess collagen content, but the study proposes a new technique called polarization-resolved second harmonic generation (PR-SHG) microscopy to analyze collagen fiber orientation and crystallization.
  • - Researchers studied liver samples from autopsy cases across fibrosis stages F0-F4, using PR-SHG to capture images by adjusting the laser polarization angle, revealing how collagen properties change with fibrosis progression.
  • - The study found that while the overall collagen content increased with fibrosis, the orientation of the fiber (φ) remained random; however, the mean crystallinity (ρ) significantly increased in stage F4, suggesting PR-SHG reveals crucial details about collagen fiber properties in liver fibrosis.
View Article and Find Full Text PDF

THz waves are promising wireless carriers for next-generation wireless communications, where a seamless connection from wireless to optical communication is required. In this study, we demonstrate carrier conversion from THz waves to dual-wavelength NIR light injection-locking to an optical frequency comb using asynchronous nonpolarimetric electro-optic downconversion with an electro-optic polymer modulator. THz wave in the W band was detected as a stable photonic RF beat signal of 1 GHz with a signal-to-noise ratio of 20 dB via the proposed THz-to-NIR carrier conversion.

View Article and Find Full Text PDF

Herein, we integrated angle-scanning surface plasmon resonance (SPR) and angle-fixed SPR as a hybrid angular-interrogation SPR to enhance the sensing performance. Galvanometer-mirror-based beam angle scanning achieves a 100-Hz acquisition rate of both the angular SPR reflectance spectrum and the angle-fixed SPR reflectance, whereas the use of near-infrared light enhances the refractive index (RI) sensitivity, range, and precision compared with visible light. Simultaneous measurement of the angular SPR reflectance spectrum and angle-fixed SPR reflectance boosts the RI change range, RI resolution, and RI accuracy to 10-10 RIU, 2.

View Article and Find Full Text PDF

Digital holography (DH) is a powerful tool for the surface profilometry of objects with sub-wavelength precision. In this article, we demonstrate full-cascade-linked synthetic-wavelength DH for nanometer-precision surface metrology of millimeter-sized stepped objects. 300 modes of optical frequency comb (OFC) with different wavelengths are sequentially extracted at a step of mode spacing from a 10GHz-spacing, 3.

View Article and Find Full Text PDF

We have synthesized a cyan fluorescent boron complex based on a tridentate imidazo[1,5-]pyridine ligand. The boron complex was found to have potential applications as not only a chiroptical material but also a heavy-atom-free mitochondria-targeted photosensitizer for cancer treatment.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is associated with the chronic progression of fibrosis. In general, the progression of liver fibrosis is determined by a histopathological assessment with a collagen-stained section; however, the ultra-early stage of liver fibrosis is challenging to identify because of the low sensitivity in the collagen-selective staining method. In the present study, we demonstrate the feasibility of second-harmonic generation (SHG) microscopy in the histopathological diagnosis of the liver of NAFLD patients for the quantitative assessment of the ultra-early stage of fibrosis.

View Article and Find Full Text PDF

Nondestructive testing of concrete materials is essential in civil engineering to maintain social infrastructure such as buildings or bridges. In this study, we constructed an ultralow-frequency, ultranarrow-bandwidth, coherent terahertz (THz) imaging system based on THz time-domain spectroscopy (THz-TDS). Based on its ultralow-frequency-localized THz wave and coherent detection, the present system achieved a wide dynamic range of THz power over 100 dB at 0.

View Article and Find Full Text PDF

We have synthesized a cyan fluorescent benzothiazole-pyridinium salt composite based on D-π-A architecture. This salt was found to work as not only a two- and three-photon excitable fluorophore but also a degradation agent against amyloid fibrils under LED irradiation conditions.

View Article and Find Full Text PDF

Phase imaging without a phase wrapping ambiguity is required for wide-axial-range 3D imaging in the fields of surface topography measurement and biomedical imaging. Although multicascade-linked synthetic-wavelength digital holography (MCL-SW-DH) using an optical frequency synthesizer (OFS) is a promising method to meet this requirement, the slow switching of multiple optical wavelengths in the OFS prevents rapid imaging. In the work described in this article, a line-by-line spectral-shaped electro-optics-modulator-based optical frequency comb (EOM-OFC) is used as a light source in MCL-SW-DH to achieve rapid image acquisition.

View Article and Find Full Text PDF

Predominant evidence of non-alcoholic fatty liver disease (NAFLD) is the accumulation of excess lipids in the liver. A small group with NAFLD may have a more serious condition named non-alcoholic steatohepatitis (NASH). However, there is a lack of investigation of the accumulated lipids with spatial and molecular information.

View Article and Find Full Text PDF

We have synthesized a series of quaternized imidazo[1,2-a]pyridines in three steps from commercially available reagents. These compounds exhibit blue fluorescence emission at around 425 nm with good quantum yields. In addition, one specific compound was found to work as not only a two- and three-photon excitable mitochondria imaging agent, but also a therapeutic agent upon continuous irradiation conditions.

View Article and Find Full Text PDF

Spectroscopic polarimetry (SP) is a powerful tool for characterization of thin film, polarization optics, semiconductor, and others. However, mechanical polarization modulation of broadband light hampers its application for dynamic monitoring of a sample. In this article, we demonstrate the dynamic SP with features of polarization-modulation-free polarimetry and spectrometer-free spectroscopy benefiting from dual-comb spectroscopy (DCS) using a pair of optical frequency combs (OFCs).

View Article and Find Full Text PDF

Dual-comb microscopy (DCM), based on a combination of dual-comb spectroscopy (DCS) with two-dimensional spectral encoding (2D-SE), is a promising method for scan-less confocal laser microscopy giving an amplitude and phase image contrast with the confocality. However, signal loss in a 2D-SE optical system hampers increase in image acquisition rate due to decreased signal-to-noise ratio. In this article, we demonstrated optical image amplification in DCM with an erbium-doped fiber amplifier (EDFA).

View Article and Find Full Text PDF

In this study, we propose a one-drop self-assembly method, which proved capable of successfully preparing 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) single-crystalline nanowires (NWs). The apparent roughness of the DAST NWs was determined to be less than 100 pm by using a high-resolution atomic force microscope, indicating their ultrafine quality. The DAST NWs also exhibited excellent nonlinear optical properties, including two-photon excited fluorescence and second harmonic generation, which could enable the production of low-cost, low-power-consumption wideband wavelength conversion devices.

View Article and Find Full Text PDF

The aim of this study is to evaluate the osteoblastic collagen synthesis under mechanical stimulation using second-harmonic-generation (SHG) microscopy. We apply SHG microscopy to monitor the collagen fibers synthesized by osteoblast-like cells (MC3T3-E1) without the need for fixation and staining. To quantitatively evaluate the influence of mechanical stimulation on osteoblastic collagen synthesis, we compare SHG images of osteoblast-synthesized collagen fibers with and without a cyclic stretch stimulus applied using a lab-made stretching device.

View Article and Find Full Text PDF

We propose an optical frequency comb (OFC)-based strain sensing method, namely OFC sensing cavity, which is capable of radio-frequency (RF)-based strain measurement. We developed a null-method-based strain sensing system with a comb-spacing-stabilized OFC generator. We realized strain measurement from 1.

View Article and Find Full Text PDF

Second-harmonic-generation (SHG) microscopy is a powerful tool for in vivo visualisation of collagen fibres in human skin because of its specific collagen selectivity without the need for staining, non-invasiveness and high-resolution three-dimensional imaging. Although texture analysis of SHG images is a promising method for the quantitative analysis of well-orientated collagen fibre structure in the tendon and cornea, there are few attempts to assess cutaneous ageing. In this study, we applied two texture analysis techniques, namely autocorrelation (2D-AC) analysis and two-dimensional Fourier transform (2D-FT), to evaluate the age-dependent changes in reticular dermal collagen fibres in in vivo human cheek skin.

View Article and Find Full Text PDF

Spectroscopic ellipsometry is a means of investigating optical and dielectric material responses. Conventional spectroscopic ellipsometry is subject to trade-offs between spectral accuracy, resolution, and measurement time. Polarization modulation has afforded poor performance because of its sensitivity to mechanical vibrational noise, thermal instability, and polarization-wavelength dependency.

View Article and Find Full Text PDF

In bone tissue engineering and regeneration, there is a considerable need for an unstained method of monitoring collagen fibers produced by osteoblasts. This is because collagen fibers play an important role as a bone matrix and continuous monitoring of their temporal dynamics is important in clarifying the organization process toward forming bone tissue. In the work described here, using a second-harmonic-generation (SHG) microscope, we performed in situ time-series monitoring of collagen fibers produced by cultured osteoblasts without the need for staining.

View Article and Find Full Text PDF

Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one.

View Article and Find Full Text PDF