Organic semiconductors (OSCs) are important active materials for the fabrication of next-generation organic-based electronics. However, the development of n-type OSCs lags behind that of p-type OSCs in terms of charge-carrier mobility and environmental stability. This is due to the absence of molecular designs that satisfy the requirements.
View Article and Find Full Text PDFIn this paper, the molecular design of the first deep-lowest unoccupied molecular orbital (LUMO) level diimide π-electron core, benzo[ c]thiophene diimide (BTDI), as a novel n-type organic semiconductor was determined. An original synthetic sequence was devised to obtain the target cyclohexyl-BTDI (Cy-BTDI) derivative. Cy-BTDI demonstrated completely reversible reduction waves and a stable radical anionic state.
View Article and Find Full Text PDF[reaction: see text] A new triradical molecule, 2,6,10-tris(dianisylaminium)-3,7,11-tris(hexyloxy)triphenylene 1(3+), was synthesized by oxidative trimerization, palladium-catalyzed amination, and subsequent oxidation. It was chemically stable with a half-life > 1 month and displayed the magnetic parameter of S = 3/2 even at room temperature.
View Article and Find Full Text PDFPoly[1,2,(4)-phenylenevinyleneanisylaminium] 1 was synthesized by one-pot palladium-catalyzed polycondensation of N-(3-bromo-4-vinylphenyl)-N-(4-methoxyphenyl)-N-(4-vinylphenyl)amine 3 and subsequent oxidation with the thianthrene cation radical tetrafluoroborate: compound 1 three-directionally satisfies a non-Kekulé-type pi-conjugation and the ferromagnetic connectivity of the unpaired electrons of the triarylaminium cationic radical. The average molecular weight of the polymer was 4700-5900 (degree of polymerization = 11-14), which gave a single molecular-based and globular-shaped image of ca. 15 nm diameter by atomic and magnetic force microscopies under ambient conditions.
View Article and Find Full Text PDF