Breast cancer is a complex heterogeneous disease with unique molecular subtypes, which limits the development of optimized treatment strategies for each subtype. Cancer gene therapy and potential therapeutics for advanced/refractory cancers can be promising for breast cancer. Combining tumor-tropic lipid nanoparticles (LNPs) and inducible caspase-9 (iC9) mRNA, we aimed to develop a novel treatment strategy for refractory breast cancer.
View Article and Find Full Text PDFFetal exposure to dioxins and related compounds is known to disrupt normal development of the midbrain dopaminergic system, which regulates behavior, cognition and emotion. The toxicity of these chemicals is mediated mainly by aryl hydrocarbon receptor (AhR) signaling. Previously, we identified a novel binding motif of AhR, the AhR-responsive element III (AHRE-III), in vitro.
View Article and Find Full Text PDFTyrosine hydroxylase (TH) assay is a novel bioassay for screening aryl hydrocarbon receptor (AhR)-active compounds with diverse toxicities. The TH assay employs reporter genes to evaluate TH promoter activity, which is linked to dopamine synthesis and regulated by the AhR-aryl hydrocarbon receptor responsive element-III (AHRE-III)-mediated pathway. The toxic equivalency factors for higher chlorinated dioxin congeners in the TH assay (TH-TEF) exhibit the same tendency as those for the WHO-TEF, indicating that the activity of the TH assay is consistent with that of existing methods.
View Article and Find Full Text PDFBackground: Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDFBackground: Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s) of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR).
View Article and Find Full Text PDF