The tailoring of novel nanomaterials for sensitive glucose detection through a non-enzymatic mechanism is currently under intensive research. Here, we present a laser-induced graphene (LIG) electrode decorated with silver nanoparticles (AgNPs) as a catalytic element for the direct electrooxidation of glucose. The AgNPs were synthesized through cyclic voltammetry using LIG as a template, resulting in a porous tridimensional assembly with anchored nanostructures.
View Article and Find Full Text PDFIn this research, a brush-like polyaniline (poly(2-acrylamide-2-methyl-1-propanesulfonate)--polyaniline)--poly(-vinylcarbazole) (BL PAni) was developed as a strategy to overcome the limited processability and dedoping above pH 4 of conventional polyaniline (PAni). For the BL PAni synthesis, RAFT polymerization (homopolymer), RAFT-mediated surfactant-free emulsion polymerization (block copolymer), and interfacial oxidative polymerization were applied to graft the PAni chains. NMR and FT-IR spectroscopies were performed to confirm the structural elucidation of the reaction pathways, while the thermal properties were analyzed by TGA and DSC.
View Article and Find Full Text PDF