Two numerical algorithms based on dual-Petrov-Galerkin method are developed for solving the integrated forms of high odd-order boundary value problems (BVPs) governed by homogeneous and nonhomogeneous boundary conditions. Two different choices of trial functions and test functions which satisfy the underlying boundary conditions of the differential equations and the dual boundary conditions are used for this purpose. These choices lead to linear systems with specially structured matrices that can be efficiently inverted, hence greatly reducing the cost.
View Article and Find Full Text PDF