Despite the progress in driving automation, the market introduction of higher-level automation has not yet been achieved. One of the main reasons for this is the effort in safety validation to prove functional safety to the customer. However, virtual testing may compromise this challenge, but the modelling of machine perception and proving its validity has not been solved completely.
View Article and Find Full Text PDFThe safety approval and assessment of automated driving systems (ADS) are becoming sophisticated and challenging tasks. Because the number of traffic scenarios is vast, it is essential to assess their criticality and extract the ones that present a safety risk. In this paper, we are proposing a novel method based on the time-to-react (TTR) measurement, which has advantages in considering avoidance possibilities.
View Article and Find Full Text PDFRadar sensors were among the first perceptual sensors used for automated driving. Although several other technologies such as lidar, camera, and ultrasonic sensors are available, radar sensors have maintained and will continue to maintain their importance due to their reliability in adverse weather conditions. Virtual methods are being developed for verification and validation of automated driving functions to reduce the time and cost of testing.
View Article and Find Full Text PDF(1) Background: Due to its high safety potential, one of the most common ADAS technologies is the lane support system (LSS). The main purpose of LSS is to prevent road accidents caused by road departure or entrance in the lane of other vehicles. Such accidents are especially common on rural roads during nighttime.
View Article and Find Full Text PDFDrowsiness is a leading cause of accidents on the road as it negatively affects the driver's ability to safely operate a vehicle. Neural activity recorded by EEG electrodes is a widely used physiological correlate of driver drowsiness. This paper presents a novel dynamical modeling solution to estimate the instantaneous level of the driver drowsiness using EEG signals, where the PERcentage of eyelid CLOSure (PERCLOS) is employed as the ground truth of driver drowsiness.
View Article and Find Full Text PDFA spectacular measurement campaign was carried out on a real-world motorway stretch of Hungary with the participation of international industrial and academic partners. The measurement resulted in vehicle based and infrastructure based sensor data that will be extremely useful for future automotive R&D activities due to the available ground truth for static and dynamic content. The aim of the measurement campaign was twofold.
View Article and Find Full Text PDFThis paper presents a novel feature selection method to design a non-invasive driver drowsiness detection system based on steering wheel data. The proposed feature selector can select the most related features to the drowsiness level to improve the classification accuracy. This method is based on the combination of the filter and wrapper feature selection algorithms using adaptive neuro-fuzzy inference system (ANFIS).
View Article and Find Full Text PDFObjective: This study investigated drivers' evaluation of a conventional autonomous emergency braking (AEB) system on high and reduced tire-road friction and compared these results to those of an AEB system adaptive to the reduced tire-road friction by earlier braking. Current automated systems such as the AEB do not adapt the vehicle control strategy to the road friction; for example, on snowy roads. Because winter precipitation is associated with a 19% increase in traffic crashes and a 13% increase in injuries compared to dry conditions, the potential of conventional AEB to prevent collisions could be significantly improved by including friction in the control algorithm.
View Article and Find Full Text PDFThis study proposes a drowsiness detection approach based on the combination of several different detection methods, with robustness to the input signal loss. Hence, if one of the methods fails for any reason, the whole system continues to work properly. To choose correct combination of the available methods and to utilize the benefits of methods of different categories, an image processing-based technique as well as a method based on driver-vehicle interaction is used.
View Article and Find Full Text PDFThe aim of this study is to validate the pressure effect theory on human beings during a realistic rear-end impact and to correlate the neck injury criterion to pressure in the spinal canal. Sled experiments were performed using a test setup similar to real rear-end collisions. Test conditions were chosen based on accident statistics and recordings of real accidents.
View Article and Find Full Text PDF