Front Endocrinol (Lausanne)
December 2022
Aberrant activation of the epidermal growth factor receptor (EGFR) by mutations has been implicated in a variety of human cancers. Elucidation of the structure of the full-length receptor is essential to understand the molecular mechanisms underlying its activation. Unlike previously anticipated, here, we report that purified full-length EGFR adopts a homodimeric form before and after ligand binding.
View Article and Find Full Text PDFActive propagation of electrical signals in C. elegans neurons requires ion channels capable of regenerating membrane potentials. Here we report regenerative depolarization of a major gustatory sensory neuron, ASEL.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
February 2018
Background: Biological molecular machines support various activities and behaviors of cells, such as energy production, signal transduction, growth, differentiation, and migration.
Scope Of Review: We provide an overview of single-molecule imaging methods involving both small and large probes used to monitor the dynamic motions of molecular machines in vitro (purified proteins) and in living cells, and single-molecule manipulation methods used to measure the forces, mechanical properties and responses of biomolecules. We also introduce several examples of single-molecule analysis, focusing primarily on motor proteins and signal transduction systems.
The epidermal growth factor receptor (EGFR) plays vital roles in cellular processes including cell proliferation, survival, motility, and differentiation. The dysregulated activation of the receptor is often implicated in human cancers. EGFR is synthesized as a single-pass transmembrane protein, which consists of an extracellular ligand-binding domain and an intracellular kinase domain separated by a single transmembrane domain.
View Article and Find Full Text PDFF1-ATPase is a motor enzyme in which a central shaft γ subunit rotates 120° per ATP in the cylinder made of α3β3 subunits. During rotation, the chemical energy of ATP hydrolysis (ΔGATP) is converted almost entirely into mechanical work by an elusive mechanism. We measured the force for rotation (torque) under various ΔGATP conditions as a function of rotation angles of the γ subunit with quasi-static, single-molecule manipulation and estimated mechanical work (torque × traveled angle) from the area of the function.
View Article and Find Full Text PDFThe rotary motor enzyme F1-ATPase (F1) is a catalytic subcomplex of FoF1-ATP synthase that produces most of the ATP in respiring cells. Chemomechanical coupling has been studied extensively for bacterial F1 but very little for mitochondrial F1. Here we report ATP-driven rotation of human mitochondrial F1.
View Article and Find Full Text PDFATP synthase (F(0)F(1)) is made of two motors, a proton-driven motor (F(0)) and an ATP-driven motor (F(1)), connected by a common rotary shaft, and catalyzes proton flow-driven ATP synthesis and ATP-driven proton pumping. In F(1), the central γ subunit rotates inside the α(3)β(3) ring. Here we report structural features of F(1) responsible for torque generation and the catalytic ability of the low-torque F(0)F(1).
View Article and Find Full Text PDFF(1)-ATPase (F(1)), a soluble portion of F(o)F(1)-ATP synthase (F(o)F(1)), is an ATP-driven motor in which gammaepsilon subunits rotate in the alpha(3)beta(3) cylinder. Activity of F(1) and F(o)F(1) from Bacillus PS3 is attenuated by the epsilon subunit in an inhibitory extended form. In this study we observed ATP-dependent transition of epsilon in single F(1) molecules from extended form to hairpin form by fluorescence resonance energy transfer.
View Article and Find Full Text PDF