Gaze understanding—a suggested precursor for understanding others’ intentions—requires recovery of gaze direction from the observed person's head and eye position. This challenging computation is naturally acquired at infancy without explicit external guidance, but can it be learned later if vision is extremely poor throughout early childhood? We addressed this question by studying gaze following in Ethiopian patients with early bilateral congenital cataracts diagnosed and treated by us only at late childhood. This sight restoration provided a unique opportunity to directly address basic issues on the roles of “nature” and “nurture” in development, as it caused a selective perturbation to the natural process, eliminating some gaze-direction cues while leaving others still available.
View Article and Find Full Text PDFAdult humans make effortless use of multisensory signals and typically integrate them in an optimal fashion. This remarkable ability takes many years for normally sighted children to develop. Would individuals born blind or with extremely low vision still be able to develop multisensory integration later in life when surgically treated for sight restoration? Late acquisition of such capability would be a vivid example of the brain's ability to retain high levels of plasticity.
View Article and Find Full Text PDFVisual perception requires massive use of inference because the 3D structure of the world is not directly provided by the sensory input. Particularly challenging is anorthoscopic vision-when an object moves behind a narrow slit such that only a tiny fraction of it is visible at any instant. Impressively, human observers correctly recognize objects in slit-viewing conditions by early childhood, via temporal integration of the contours available in each sliver.
View Article and Find Full Text PDFPatients with right hemisphere damage often show a lateral bias when asked to report the left side of mental images held in visual working memory (i.e. representational neglect).
View Article and Find Full Text PDFOrganisms exploit spatiotemporal regularities in the environment to optimize goal attainment. For example, in experimental conditions, repetition of a stimulus at the same position speeds up response time. A recent study reported that this spatial priming occurs even when the eyes move between trials, indicating that the target is encoded in spatiotopic coordinates (Attention, Perception & Psychophysics 78, (2016) 114-132).
View Article and Find Full Text PDFViewing a hand action performed by another person facilitates a response-compatible action and slows a response-incompatible one, even when the viewed action is irrelevant to the task. This automatic imitation effect is taken as the clearest evidence for a direct mapping between action viewing and motor performance. But there is an ongoing debate whether this effect is innate or experience dependent.
View Article and Find Full Text PDFWe typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions.
View Article and Find Full Text PDFWe can estimate the veridical size of nearby objects reasonably well irrespective of their viewing distance. This perceptual capability, termed size constancy, is accomplished by combining information about retinal image size together with the viewing distance, or using the relational information available in the scene, via direct perception [1]. A previous study [2] showed that children typically underestimate the size of a distant object.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Visual sensitivity is markedly reduced during an eye movement. Peri-saccadic vision is also characterized by a mislocalization of the briefly presented stimulus closer to the saccadic target. These features are commonly viewed as obligatory elements of peri-saccadic vision.
View Article and Find Full Text PDFFront Psychol
February 2016
What happens to the representation of a moving stimulus when it is no longer present and its motion direction has to be maintained in working memory (WM)? Is the initial, sensorial representation maintained during the delay period or is there another representation, at a higher level of abstraction? It is also feasible that multiple representations may co-exist in WM, manifesting different facets of sensory and more abstract features. To that end, we investigated the mnemonic representation of motion direction in a series of three psychophysical experiments, using a delayed motion-discrimination task (relative clockwise∖counter-clockwise judgment). First, we show that a change in the dots' contrast polarity does not hamper performance.
View Article and Find Full Text PDFVisual object recognition develops during the first years of life. But what if one is deprived of vision during early post-natal development? Shape information is extracted using both low-level cues (e.g.
View Article and Find Full Text PDFUnlabelled: Parietal cortex is often implicated in visual processing of actions. Action understanding is essentially abstract, specific to the type or goal of action, but greatly independent of variations in the perceived position of the action. If certain parietal regions are involved in action understanding, then we expect them to show these generalization and selectivity properties.
View Article and Find Full Text PDFRegions in the occipitotemporal cortex (OTC) show clear selectivity to static images of human body parts, and upper limbs in particular, with respect to other object categories. Such selectivity was previously attributed to shape aspects, which presumably vary across categories. Alternatively, it has been proposed that functional selectivity for upper limbs is driven by processing of their distinctive motion features.
View Article and Find Full Text PDFOne feature of visual processing in the ventral stream is that cortical responses gradually depart from the physical aspects of the visual stimulus and become correlated with perceptual experience. Thus, unlike early retinotopic areas, the responses in the object-related lateral occipital complex (LOC) are typically immune to parameter changes (e.g.
View Article and Find Full Text PDFPatients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center.
View Article and Find Full Text PDFAccurately perceiving the velocity of an object during smooth pursuit is a complex challenge: although the object is moving in the world, it is almost still on the retina. Yet we can perceive the veridical motion of a visual stimulus in such conditions, suggesting a nonretinal representation of the motion vector. To explore this issue, we studied the frames of representation of the motion vector by evoking the well known motion aftereffect during smooth-pursuit eye movements (SPEM).
View Article and Find Full Text PDFViewed object-oriented actions elicit widespread fMRI activation in the dorsal and ventral visual pathways. This activation is typically stronger in the hemisphere contralateral to the visual field in which action is seen. However, since in previous studies participants kept fixation at the same screen position throughout the scan, it was impossible to infer if the viewed actions are represented in retina-based coordinates or in a more elaborated coordinate system.
View Article and Find Full Text PDFThe human primary motor cortex (M1) is robustly activated during visually guided hand movements. M1 multivoxel patterns of functional MRI activation are more correlated during repeated hand movements to the same targets than to greatly differing ones, and therefore potentially contain information about movement direction. It is unclear, however, whether direction specificity is due to the motor command, as implicitly assumed, or to the visual aspects of the task, such as the target location and the direction of the cursor's trajectory.
View Article and Find Full Text PDFWe apply functional magnetic resonance imaging and multivariate analysis methods to study the coordinate frame in which saccades are represented in the human cortex. Subjects performed a memory-guided saccade task in which equal-amplitude eye movements were executed from several starting points to various directions. Response patterns during the memory period for same-vector saccades were correlated in the frontal eye fields and the intraparietal sulcus (IPS), indicating a retinotopic representation.
View Article and Find Full Text PDFLarge-scale topographic representations of the body have long been established in the somatosensory and motor cortices. Using functional imaging, we identified a topographically organized body part map within the occipitotemporal cortex (OTC), with distinct clusters of voxels showing clear preference for different visually presented body parts. This representation was consistent both across hemispheres and participants.
View Article and Find Full Text PDFIn monkeys, neurons in the hand representation of the primary motor cortex (M1) are often tuned to the direction of hand movement, and there is evidence that these neurons are clustered according to their "preferred" direction of movement. However, this organizational principle has yet to be demonstrated in M1 of humans. We conducted a functional magnetic resonance imaging (fMRI) study in which participants used a joystick to move a cursor from a central origin to one of five equidistant targets.
View Article and Find Full Text PDFInhibition of return (IOR), a performance decrement for stimuli appearing at recently cued locations, occurs when the target and cue share the same screen position. This is in contrast to cue-based attention facilitation effects that were recently suggested to be mapped in a retinotopic reference frame, the prevailing representation throughout early visual processing stages. Here, we investigate the dynamics of IOR in both reference frames, using a modified cued-location saccadic reaction time task with an intervening saccade between cue and target presentation.
View Article and Find Full Text PDFRestor Neurol Neurosci
July 2010
Purpose: Recent studies show evidence of multisensory representation in the functionally normal visual cortex, but this idea remains controversial. Occipital cortex activation is often claimed to be a reflection of mental visual imagery processes triggered by other modalities. However, if the occipital cortex is genuinely active during touch, this might be the basis for the massive cross-modal plasticity observed in the congenitally blind.
View Article and Find Full Text PDFWe typically examine scenes by performing multiple saccades to different objects of interest within the image. Therefore, an extra-retinotopic representation, invariant to the changes in the retinal image caused by eye movements, might be useful for high-level visual processing. We investigate here, using a matching task, whether the representation of complex natural images is retinotopic or screen-based.
View Article and Find Full Text PDF