Publications by authors named "Ehsan shah Hosseini"

We design and demonstrate, to the best of our knowledge, the first whispering gallery germanium-on-silicon photodetector with evanescent coupling from a silicon bus waveguide in a CMOS-compatible process. The small footprint (63.6  μm), high responsivity (∼1.

View Article and Find Full Text PDF

We report ultra-narrow-linewidth erbium-doped aluminum oxide (AlO:Er) distributed feedback (DFB) lasers with a wavelength-insensitive silicon-compatible waveguide design. The waveguide consists of five silicon nitride (SiN) segments buried under silicon dioxide (SiO) with a layer AlO:Er deposited on top. This design has a high confinement factor (> 85%) and a near perfect (> 98%) intensity overlap for an octave-spanning range across near infra-red wavelengths (950-2000 nm).

View Article and Find Full Text PDF

We present the systematic design, fabrication, and characterization of a multiplexed label-free lab-on-a-chip biosensor using silicon nitride (SiN) microring resonators. Sensor design is addressed through a systematic approach that enables optimizing the sensor according to the specific noise characteristics of the setup. We find that an optimal 6 dB undercoupled resonator consumes 40% less power in our platform to achieve the same limit-of-detection as the conventional designs using critically coupled resonators that have the maximum light-matter interaction.

View Article and Find Full Text PDF

We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.

View Article and Find Full Text PDF

Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength-division-multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s(-1)), low-voltage (0.5 VPP) and efficient 0.

View Article and Find Full Text PDF

On-chip, high-power, erbium-doped distributed feedback lasers are demonstrated in a CMOS-compatible fabrication flow. The laser cavities consist of silicon nitride waveguide and grating features, defined by wafer-scale immersion lithography and an erbium-doped aluminum oxide layer deposited as the final step in the fabrication process. The large mode size lasers demonstrate single-mode continuous wave operation with a maximum output power of 75 mW without any thermal damage.

View Article and Find Full Text PDF

In this Letter, we report on the first integrated four-port polarizing beam splitter. The device operates on the principle of mode evolution and was implemented in a silicon-on-insulator silicon photonics platform and fabricated on a 300 mm CMOS line using 193 nm optical immersion lithography. The adiabatic transition forming of the structure enabled over a 150 nm bandwidth from λ~1350 to λ~1500  nm, achieving a cross-talk level below -10  dB over the entire band.

View Article and Find Full Text PDF

In this Letter, we demonstrate an 8×8 apodized silicon photonic phased array where the emission from each of 64 nanoantennas was tailored to exhibit Gaussian-shaped intensity distributions in the near field so that the sidelobes of the generated far-field optical beam were suppressed compared to that of a uniform phased array. With the aid of the 72 thermo-optic phase tuners directly integrated within the phased array, we dynamically shaped the generated optical beam in the far field in a variety of ways.

View Article and Find Full Text PDF

We report on an integrated λ/4-shifted Bragg grating array using a wafer-scale complementary metal-oxide semiconductor (CMOS) compatible process with silicon-nitride waveguides. A sidewall grating was used to simplify the fabrication process, and a sampled Bragg grating with equivalent phase-shift structure was employed to achieve an accurate λ/4 phase shift. A four-channel λ/4-shifted Bragg grating array with highly uniform channel spacing was demonstrated with a measured channel spacing variation below 10 pm (1.

View Article and Find Full Text PDF

A new method for measuring waveguide propagation loss in silicon nanowires is presented. This method, based on the interplay between traveling ring modes and standing wave modes due to back-scattering from edge roughness, is accurate and can be used for on wafer measurement of test structures. Examples of loss measurements and fitting are reported.

View Article and Find Full Text PDF

Electromagnetic phased arrays at radio frequencies are well known and have enabled applications ranging from communications to radar, broadcasting and astronomy. The ability to generate arbitrary radiation patterns with large-scale phased arrays has long been pursued. Although it is extremely expensive and cumbersome to deploy large-scale radiofrequency phased arrays, optical phased arrays have a unique advantage in that the much shorter optical wavelength holds promise for large-scale integration.

View Article and Find Full Text PDF

We present our recent progress in designing nanophotonic devices for integrated sensing applications. We focus on Si-based microresonators and on-chip spectrometers as the main building blocks to implement compact sensing platforms with strong light-matter interaction. The performance of these devices is discussed, and their future prospects in realizing low-power low-cost portable multi-purpose sensing systems are addressed.

View Article and Find Full Text PDF

We present a method for eliminating the temperature dependence of the resonance wavelength in high-Q silicon-based microdisk resonators by using a polymer cladding with a negative thermo-optic coefficient. Design requirements for athermal performance are derived based on theory and simulation, and their validity is experimentally verified.

View Article and Find Full Text PDF

We report our recent progress in designing and developing traveling-wave microresonators on CMOS compatible substrate, with a focus on ultra-compact Si-based microring and microdisk resonators in the visible and near infrared wavelengths with ultra-high Q and small mode volume, suitable for strong light-matter interaction. The performance of these resonators is discussed, and the design and fabrication challenges and solutions to achieve efficient coupling from the bus-waveguide to the resonator is mentioned. Coupled-resonator architectures for the design of filters are analyzed and theoretical and experimental results for the flat-band filters with wide bandwidth and large free spectral range are presented.

View Article and Find Full Text PDF

High quality (Q approximately 6 x 10(5)) microdisk resonators are demonstrated in a Si(3)N(4) on SiO(2) platform at 652-660 nm with integrated in-plane wrap-around coupling waveguides to enable critical coupling to specific microdisk radial modes. Selective coupling to the first three radial modes with >20dB suppression of the other radial modes is achieved by controlling the wrap-around waveguide width. Advantages of such pulley-coupled microdisk resonators include single mode operation, ease of fabrication due to larger waveguide-resonator gaps, the possibility of resist reflow during the lithography phase to improve microdisk etched surface quality, and the ability to realize highly over-coupled microdisks suitable for low-loss delay lines and add-drop filters.

View Article and Find Full Text PDF

We demonstrate the feasibility of forming a compact integrated photonic spectrometer for operation in the visible wavelength range using the dispersive properties of a planar photonic crystal structure fabricated in silicon nitride. High wavelength resolution and compact device sizes in these spectrometers are enabled by combining superprism effect, negative diffraction effect, and negative refraction effect in a 45 degree rotated square lattice photonic crystal. Our experimental demonstration shows 1.

View Article and Find Full Text PDF

High quality factor (Q approximately 3.4 x 10(6)) microdisk resonators are demonstrated in a Si(3)N(4) on SiO(2) platform at 652-660 nm with integrated in-plane coupling waveguides. Critical coupling to several radial modes is demonstrated using a rib-like structure with a thin Si(3)N(4) layer at the air-substrate interface to improve the coupling.

View Article and Find Full Text PDF

In this work we present a systematic approach to increase the low-loss guiding bandwidth of PCWs by reducing the interaction of low-group-velocity modes with the surrounding photonic crystal. By this method the low-loss bandwidth of a W1 PCW is increased from 2.5 nm to 12 nm.

View Article and Find Full Text PDF

We present experimental evidence for strong angular dispersion in a planar photonic crystal (PC) structure by properly engineering the modes in the second PC band. We show that by using the second photonic band of a square lattice PC, angular dispersion of 4 degrees /nm can be achieved. We also show that major challenges in designing practical PC devices using second band modes can be addressed by engineering the lattice and adding input/output buffer stages designed to eliminate unwanted effects.

View Article and Find Full Text PDF