Incontrovertibly there is an increasing demand for the development of benign inks suitable for fabrication of high-performing perovskite-based thin film functional layers. Nevertheless, most reported perovskite precursors rely on the use of highly toxic solvents such as acetonitrile, 2-methoxyethanol, dimethylformamide, and many others. Hence, there is a strong imperative for the development of novel and greener inks, which will facilitate smoother commercialization of technologies based on functional perovskite films.
View Article and Find Full Text PDFHalide perovskite materials have been extensively explored for their unique electrical, optical, magnetic, and catalytic properties. Most notably, solar cells based on perovskite thin films have improved their power conversion efficiency from 3.8% to over 25% during the last 12 years.
View Article and Find Full Text PDFOrganic-inorganic halide perovskite solar cells (PSCs) have shown a significant growth in power conversion efficiencies (PCEs) during last decade. Progress in device architecture and high-quality perovskite film fabrication has led to an incredible efficiency over 25% in close to a decade. Developments in solution-based thin film deposition techniques for perovskite layer preparation in PSCs provide low cost and ease of process for their manufacturing, making them a potential contender in future solar energy harvesting technologies.
View Article and Find Full Text PDFSemiconducting molecules have been employed to passivate traps extant in the perovskite film for enhancement of perovskite solar cells (PSCs) efficiency and stability. A molecular design strategy to passivate the defects both on the surface and interior of the CH NH PbI perovskite layer, using two phthalocyanine (Pc) molecules (NP-SC -ZnPc and NP-SC -TiOPc) is demonstrated. The presence of lone electron pairs on S, N, and O atoms of the Pc molecular structures provides the opportunity for Lewis acid-base interactions with under-coordinated Pb sites, leading to efficient defect passivation of the perovskite layer.
View Article and Find Full Text PDFWe demonstrate a molecular design strategy to enhance the efficiency of phthalocyanine (Pc)-based hole-transporting materials (HTMs) in perovskite solar cells (PSCs). Herein, two titanyl phthalocyanine (TiOPc) derivatives are designed and applied as dopant-free HTMs in planar n-i-p-structured PSCs. The newly developed TiOPc compounds possess eight -hexylthio groups attached to either peripheral (-SC-TiOPc) or nonperipheral (-SC-TiOPc) positions of the Pc ring.
View Article and Find Full Text PDFBoron subphthalocyanine (SubPc) has special physical and chemical properties, originating from its non-centrosymmetric, near-planar taper structure and large conjugated system; it can act as an alternative to the small molecule hole-transporting material 2,2',7,7'-tetrakis-(,-di--methoxyphenylamine)-9,9'-spirobifluorene in perovskite solar cells (PSCs). To achieve a higher solubility in common organic solvents and a more suitable highest occupied molecular orbital energy level that aligns with the valence band of the perovskite material, a SubPc molecule with a hexamethyl substitution at its peripheral position (Me-SubPc) was successfully designed and synthesized in a one-step method. Completely solution processed PSCs were fabricated with only a small hysteresis, a power conversion efficiency of 6.
View Article and Find Full Text PDFSnO was recently employed as an efficient electron-transport layer (ETL) in perovskite solar cells (PSCs) and high power conversion efficiencies (PCEs) have been reported. However, it is still challenging to fabricate SnO thin films through facile solution-based synthesis at low temperature (<150 °C) to be compatible with the large scale module fabrication, especially for flexible devices. Here, we report a low temperature solution-based method for preparation of SnO nanoparticles.
View Article and Find Full Text PDFThe catalyzed luminol chemiluminescent reaction has received a great amount of attention because of its high sensitivity and low background signal which make the reaction an attractive analytical chemistry tool. The present study, introduces the beneficial catalytic effects of dinuclear Cu(II) complex [Cu2L2(TAE)]X2, where TAE=tetraacetylethane; L=N,N(')-dibenzylethylenediamine and X=ClO4 on the luminol chemiluminescent reaction as a novel probe for the determination of glutathione (GSH) and L-cysteine (CySH) in human serum and urine. The [Cu2L2(TAE)]X2 has exhibited highly efficient catalytic activity of luminol CL as an artificial peroxidase model at pH as low as 7.
View Article and Find Full Text PDF