Publications by authors named "Ehsan Darestani-Farahani"

People with age-related hearing loss suffer from speech understanding difficulties, even after correcting for differences in hearing audibility. These problems are not only attributed to deficits in audibility but are also associated with changes in central temporal processing. The goal of this study is to obtain an understanding of potential alterations in temporal envelope processing for middle-aged and older persons with and without hearing impairment.

View Article and Find Full Text PDF

Speech understanding problems are highly prevalent in the aging population, even when hearing sensitivity is clinically normal. These difficulties are attributed to changes in central temporal processing with age and can potentially be captured by age-related changes in neural generators. The aim of this study is to investigate age-related changes in a wide range of neural generators during temporal processing in middle-aged and older persons with normal audiometric thresholds.

View Article and Find Full Text PDF

Auditory steady-state responses (ASSRs) are evoked brain responses to modulated or repetitive acoustic stimuli. Investigating the underlying neural generators of ASSRs is important to gain in-depth insight into the mechanisms of auditory temporal processing. The aim of this study is to reconstruct an extensive range of neural generators, that is, cortical and subcortical, as well as primary and non-primary ones.

View Article and Find Full Text PDF

Temporal processing is essential for speech perception and directional hearing. However, the number and locations of cortical sources involved in auditory temporal processing are still a matter of debate. Using source reconstruction of human EEG responses, we show that, in addition to primary sources in the auditory cortices, sources outside the auditory cortex, designated as non-primary sources, are involved in auditory temporal processing.

View Article and Find Full Text PDF

Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years.

View Article and Find Full Text PDF

Background: Residual inhibition (RI) is a temporary phenomenon that happens following offset of appropriate complete or partial acoustical and electrical masking stimulations in people who experience tinnitus. The biologic mechanisms associated with RI are not yet fully understood. Few studies have been focused on RI.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore how a person's handedness (left or right) affects auditory middle latency responses (AMLRs) through brain mapping techniques.
  • It involved 44 healthy participants, evenly split between left-handed and right-handed individuals, who were tested by recording their AMLRs in response to sound stimuli.
  • The findings showed that left-handed individuals had larger AMLR amplitudes in certain brain regions compared to right-handed individuals, indicating that handedness influences auditory processing in the brain.
View Article and Find Full Text PDF

This study aimed to compare the neural correlates of acoustic stimulus representation in the auditory sensory memory on an automatic basis between tinnitus subjects and normal hearing (NH) controls, using topographical maps of the MMNs obtained with the multi-feature paradigm. A new and faster paradigm was adopted to look for differences between 2 groups of subjects. Twenty-eight subjects with chronic subjective idiopathic tinnitus and 33 matched healthy controls were included in the study.

View Article and Find Full Text PDF