Publications by authors named "Ehnman M"

Article Synopsis
  • Synovial Sarcomas (SS) are defined by the SS18::SSX fusion gene, which alters chromatin through BAF complex remodeling, contributing to tumor diversity.
  • Genetic analysis of 91 tumors from 55 patients led to the identification of three SS subtypes, each with distinct characteristics and prognoses: Subtype I (poor prognosis), Subtype II (better outcome), and Subtype III (complex differentiation with immune suppression).
  • Chromosomal abnormalities were linked to higher metastasis risk, and KRT8 was found crucial for epithelial differentiation in biphasic tumors, suggesting that more patients have high-risk tumors than previously recognized.
View Article and Find Full Text PDF

Fibrillar collagens promote cell proliferation, migration, and survival in various epithelial cancers and are generally associated with tumor aggressiveness. However, the impact of fibrillar collagens on soft tissue sarcoma behavior remains poorly understood. Unexpectedly, this study finds that fibrillar collagen-related gene expression is associated with favorable patient prognosis in rhabdomyosarcoma.

View Article and Find Full Text PDF

Checkpoint inhibitors are slowly being introduced in the care of specific sarcoma subtypes such as undifferentiated pleomorphic sarcoma, alveolar soft part sarcoma, and angiosarcoma even though formal indication is lacking. Proper biomarkers to unravel potential immune reactivity in the tumor microenvironment are therefore expected to be highly warranted. In this study, intratumoral spatial cross presentation was investigated as a novel concept where immune cell composition in the tumor microenvironment was suggested to act as a proxy for immune surveillance.

View Article and Find Full Text PDF

Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.

View Article and Find Full Text PDF

Purpose Of Review: This review presents a selection of regulatory molecules of tumor microenvironmental properties and metastasis. Signaling pathways controlling mesenchymal biology in bone and soft-tissue sarcomas found in children and adolescents are prioritized.

Recent Findings: The tumor microenvironment of pediatric tumors is still relatively unexplored.

View Article and Find Full Text PDF

Background: Immune cells can regulate disease progression and response to treatment in multiple tumor types, but their activities in human soft tissue sarcoma are poorly characterized.

Methods: Marker-defined immune cell subsets were characterized from a tumor microenvironmental perspective in two independent cohorts of human soft tissue sarcoma by multiplex IHC, quantitative PCR and/or bioinformatics.

Results: B cell profiling revealed a prognostic role for CD20 protein (cohort 1, 33 patients) and MS4A1 gene expression (cohort 2, 265 patients).

View Article and Find Full Text PDF

Immunohistochemistry (IHC) is a commonly used technique for protein detection in tissue sections. The method requires high-affinity antibodies that are specific for the target proteins of interest. More advanced IHC techniques have been developed to meet the need for simultaneous detection of more than one target protein in the same tissue section.

View Article and Find Full Text PDF

Aims: Solitary fibrous tumour (SFT) is an infrequently metastasising mesenchymal tumour defined by the fusion gene. Activating mutations in the () gene promoter has been reported to associate with adverse patient outcome in SFTs.

Methods: We analysed the gene for promoter mutations and copy number alterations in 43 primary extrameningeal SFTs (9 malignant and 34 benign tumours according to WHO 2013 criteria), six local recurrences and three metastatic lesions.

View Article and Find Full Text PDF

Platelet-derived growth factor D (PDGF-D) is the most recently discovered member of the PDGF family. PDGF-D signals through PDGF receptor β, but its biological role remains largely unknown. In contrast to other members of the PDGF family of growth factors, which have been extensively investigated using different knockout approaches in mice, PDGF-D has until now not been characterized by gene inactivation in mice.

View Article and Find Full Text PDF

Sarcomas are rare malignant tumors affecting all age groups. They are typically classified according to their resemblance to corresponding normal tissue. Their heterogeneous features, for example, in terms of disease-driving genetic aberrations and body location, complicate both disease classification and development of novel treatment regimens.

View Article and Find Full Text PDF

PDGF receptors (PDGFRs) exert cell type-specific effects in many different tumor types. They are emerging as key regulators of mesenchymal cells of the tumor microenvironment, and of many common malignancies, such as cancer of the breast, colon and prostate. In some tumor types PDGFRs are genetically activated and are thus directly involved in stimulation of malignant cell growth.

View Article and Find Full Text PDF

Introduction: Genetic aberrations that are associated with platelet-derived growth factor receptor (PDGFR) activity are frequently found in glioblastomas (10 - 15%), dermatofibrosarcoma protuberans (≤ 100%) and gastrointestinal stromal tumors (5%). Sequencing studies have also identified mutations at lower frequency in common cancer types. Preclinical evidence further suggests tumor stimulatory roles of PDGFRs expressed by tumor stroma cells and indicates a deleterious effect of stromal PDGFRs on intratumoral drug uptake.

View Article and Find Full Text PDF

Platelet-derived growth factor receptors (PDGFR) α and β have been suggested as potential targets for treatment of rhabdomyosarcoma, the most common soft tissue sarcoma in children. This study identifies biologic activities linked to PDGF signaling in rhabdomyosarcoma models and human sample collections. Analysis of gene expression profiles of 101 primary human rhabdomyosarcomas revealed elevated PDGF-C and -D expression in all subtypes, with PDGF-D as the solely overexpressed PDGFRβ ligand.

View Article and Find Full Text PDF

Members of the platelet-derived growth factor (PDGF) family are mitogens for cells of mesenchymal origin and have important functions during embryonic development, blood vessel maturation, fibrotic diseases and cancer. In contrast to the two classical PDGFs, the novel and less well-characterized members, PDGF-CC and PDGF-DD, are latent factors that need to be processed extracellularly by activating proteases, before they can mediate PDGF receptor activation. Here, we elucidate the structural requirements for urokinase plasminogen activator (uPA)-mediated activation of PDGF-DD, as well as the intricate interplay with uPA receptor (uPAR) signalling.

View Article and Find Full Text PDF

Platelet-derived growth factor C (PDGF-C) is one of four members in the PDGF family of growth factors, which are known mitogens and survival factors for cells of mesenchymal origin. PDGF-C has a unique two-domain structure consisting of an N-terminal CUB and a conserved C-terminal growth factor domain that are separated by a hinge region. PDGF-C is secreted as a latent dimeric factor (PDGF-CC), which undergoes extracellular removal of the CUB domains to become a PDGF receptor alpha agonist.

View Article and Find Full Text PDF

Several families of genes by and large located on the X chromosome encode proteins of unspecified function. Commonly known as cancer/testis (CT) antigens, they are considered, under normal conditions, only to be expressed in cells of the germ line and placenta. CT genes are also often expressed in cancer cells, hence their classification.

View Article and Find Full Text PDF