Historically, the chemical discovery process has predominantly been a matter of trial-and-improvement, where small modifications are made to a chemical system, guided by chemical knowledge, with the aim of optimising towards a target property or combination of properties. While a trial-and-improvement approach is frequently successful, especially when assisted by the help of serendipity, the approach is incredibly time- and resource-intensive. Complicating this further, the available chemical space that could, in theory, be explored is remarkably vast.
View Article and Find Full Text PDFLight attenuation is a primary challenge limiting the upscaling of photobioreactors for sustainable bio-production. One key to this challenge, is to model and optimise the light/dark cycles so that cells within the dark region can be frequently transferred to the light region for photosynthesis. Therefore, this study proposes the first mechanistic model to integrate the light/dark cycle effects into biomass growth kinetics.
View Article and Find Full Text PDFThe development of digital bioprocessing technologies is critical to operate modern industrial bioprocesses. This study conducted the first investigation on the efficiency of using physics-based and data-driven models for the dynamic optimisation of long-term bioprocess. More specifically, this study exploits a predictive kinetic model and a cutting-edge data-driven model to compute open-loop optimisation strategies for the production of microalgal lutein during a fed-batch operation.
View Article and Find Full Text PDFModel-based online optimization has not been widely applied to bioprocesses due to the challenges of modeling complex biological behaviors, low-quality industrial measurements, and lack of visualization techniques for ongoing processes. This study proposes an innovative hybrid modeling framework which takes advantages of both physics-based and data-driven modeling for bioprocess online monitoring, prediction, and optimization. The framework initially generates high-quality data by correcting raw process measurements via a physics-based noise filter (a generally available simple kinetic model with high fitting but low predictive performance); then constructs a predictive data-driven model to identify optimal control actions and predict discrete future bioprocess behaviors.
View Article and Find Full Text PDFMicroorganism production and remediation processes are of critical importance to the next generation of sustainable industries. Undertaking mathematical treatment of dynamic biosystems operating at any spatial or temporal scale is essential to guarantee their performance and safety. However, constructing physical models remains a challenge due to the extreme complexity of process biological mechanisms.
View Article and Find Full Text PDFThis paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model.
View Article and Find Full Text PDFChlamydomonas reinhardtii is a green microalga with the potential to generate sustainable biofuels for the future. Process simulation models are required to predict the impact of laboratory-scale growth experiments on future scaled-up system operation. Two dynamic models were constructed to simulate C.
View Article and Find Full Text PDF