Publications by authors named "Ehab Samuel"

The present work was aimed at quantifying the effects of Ni addition in the range of 0-4% together with 0.3%Zr on the hardness and the tensile properties, volume fraction of intermetallics, and changes in size and distribution of phase precipitation in Sr-modified Al-9%Si-2%Cu-0.6%Mg cast alloys.

View Article and Find Full Text PDF

The present analysis addresses the solidification and thermodynamic parameters involved during the solidification of aluminum (Al)-based alloys as presented in the literature using different systems viz., binary aluminum-boron (Al-B) and aluminum-titanium (Al-Ti) systems, ternary aluminum-titanium-boron (Al-Ti-B) and aluminum-titanium-carbon (Al-Ti-C) systems, as well as taking into consideration the silicon-titanium-aluminide (Si-TiAl) interaction in Al-based alloys containing Si. The analysis is supported by recent metallographic evidence obtained by the authors on A356.

View Article and Find Full Text PDF

The present article addresses solidification parameters, and includes analyses of the macrostructure and microstructure in the light of the results obtained from the thermal analysis, from which it is possible to conclude that undercooling (T) and recalescence (T) temperatures increase with the initial increase in titanium (Ti) concentration. If the concentration reaches approximately 0.25%, a rapid decrease in these temperatures is observed.

View Article and Find Full Text PDF

The main objective of this review is to analyze the equations proposed for expressing the effect of various parameters on porosity formation in aluminum-based alloys. These parameters include alloying elements, solidification rate, grain refining, modification, hydrogen content, as well as the applied pressure on porosity formation in such alloys. They are used to establish as precisely as possible a statistical model to describe the resulting porosity characteristics such as the percentage porosity and pore characteristics, as controlled by the chemical composition of the alloy, modification, grain refining, and the casting conditions.

View Article and Find Full Text PDF

The present study was performed on a 6061-type alloy to examine the effects of minor additions (Si, Mn, Be, Sr) of the type of precipitated Fe-based intermetallics, in terms of Fe/Si ratios. All alloys were grain refined (0.15%Ti in the form of Al-5%Ti-1%B) to minimize hot tearing during casting.

View Article and Find Full Text PDF

The present work investigated the effect of aging treatment on the microstructure and tensile properties of an Al-2%Cu base alloy containing various additions of Zr and other alloying elements. Aging was carried out at temperatures of 180-300 °C for different aging times at each temperature. The tensile properties indicated that Zr additions improved the strength of the base alloy, especially at high Zr levels at 180 °C.

View Article and Find Full Text PDF

The present study was undertaken to examine the effect of iron, manganese, copper and magnesium on the microstructural characteristics of Al-11%Si-2%Cu-Mg-based alloy referred to as 396 under different working conditions. The results show that strontium (Sr) has high affinity to react with magnesium (Mg), resulting in reduced effectiveness as eutectic silicon modifier or age hardening agent. In addition, Sr alters the sequence of the precipitation of the α-AlFeMnSi phase from post-eutectic to pro-eutectic which would harden the soft α-Aluminum matrix.

View Article and Find Full Text PDF