Objective: The present work focuses on improving zaleplon (ZAP) performance through nanosizing its insoluble particles which were then delivered intranasally in powder form.
Significance: Since nanopowders have an exceptional ability to cross cell membrane, their absorption is facilitated in the solid form. Hence, delivering insoluble ZAP nanocrystals (NC) through intranasal route improves its bioavailability due to both nanosization and the escape of hepatic metabolism.
A target of best dissolution improvement of poorly soluble drugs is a necessity for the success of formulation in industry. The present work describes the preparation, optimization, and evaluation of a new spherical agglomeration technique for glimepiride as a model of poorly soluble drugs. It involved the emulsification of a drug solution containing a dispersed carrier that tailors the crystal habit of the drug to a perfect spherical geometry, in a poor solvent containing a hydrophilic polymer which imparts sphericity and strength to the formed agglomerates.
View Article and Find Full Text PDFTriple solid dispersion adsorbates (TSDads) and spherical agglomerates (SA) present new techniques that extensively enhance dissolution of poorly soluble drugs. The aim of the present study is to hasten the onset of hypoglycemic effect of glimepiride through enhancing its rate of release from tablet formulation prepared from either technique. Drug release from TSDads or SA tablets with different added excipients was explored.
View Article and Find Full Text PDF