Publications by authors named "Egorov R"

Existing data on the phylogeography of European taxa of steppic provenance suggests that species were widely distributed during glacial periods but underwent range contraction and fragmentation during interglacials into "warm-stage refugia." Among the steppe-related invertebrates that have been examined, the majority has been insects, but data on the phylogeography of snails is wholly missing. To begin to fill this gap, phylogeographic and niche modeling studies on the presumed steppic snail were conducted.

View Article and Find Full Text PDF

A broadband source of polarization entangled photons based on type-II spontaneous parametric down conversion from a chirped PPKTP crystal is presented. With numerical simulation and experimental evaluation, we report a source of broadband polarization entangled states with a bandwidth of approximately 125 nm for use in quantum interferometry. The technique has the potential to become a basis for the development of flexible broadband sources with designed spectral properties.

View Article and Find Full Text PDF

A polarization mode dispersion (PMD) measurement of a commercial telecommunication wavelength selective switch (WSS) using a quantum interferometric technique with polarization-entangled states is presented. Polarization-entangled photons with a broad spectral width covering the telecom band are produced using a chirped periodically poled nonlinear crystal. The first demonstration of a quantum metrology application using an industrial commercial device shows a promising future for practical high-resolution quantum interference.

View Article and Find Full Text PDF

The use of quantum correlations between photons to separate measure even- and odd-order components of polarization mode dispersion (PMD) and chromatic dispersion in discrete optical elements is investigated. Two types of apparatus are discussed which use coincidence counting of entangled photon pairs to allow sub-femtosecond resolution for measurement of both PMD and chromatic dispersion. Group delays can be measured with a resolution of order 0.

View Article and Find Full Text PDF

There exists a substantial body of theory that predicts mutual screening of signed topological singularities (topological charges) in random optical fields (speckle patterns). Such screening appears to be rather mysterious because there are neither energetic nor entropic reasons for its existence. We present the first experimental confirmation of mutual screening by the stationary points of the intensity, the canonical optical scalar field, and of mutual screening by C points in elliptically polarized light, the generic optical vector field.

View Article and Find Full Text PDF

Umbilic points--singular points of curvature characterized by a fractional topological charge q=+/-1/2--are the most numerous of all special points in the landscape of random optical fields (speckle patterns), outnumbering maxima, minima, saddle points, and optical vortices. To the best of our knowledge, we present the first experimental evidence that positive and negative umbilic points screen one another. Theory predicts that in the absence of screening the charge variance in a bounded region is proportional to the area of the region, whereas in the presence of screening the variance is drastically reduced and is proportional to the perimeter.

View Article and Find Full Text PDF

The intensity of a random optical field consists of bright speckle spots (maxima) separated from dark areas (minima and optical vortices) by saddle points. We show that hidden in this complicated landscape are umbilic points--singular points at which the eigenvalues Lambda (+/-) of the Hessian matrix that measure the curvature of the landscape become degenerate. Although not observed previously in random optical fields, umbilic points are the most numerous of all special points, outnumbering maxima, minima, saddle points, and vortices.

View Article and Find Full Text PDF

A point of circular polarization embedded in a paraxial field of elliptical polarization is a polarization singularity called a C point. At such a point the major axis a and minor axis b of the ellipse become degenerate. Away from the C point this degeneracy is lifted such that surfaces a and b form nonanalytic cones that are joined at their apex (the C point) to produce a double cone called a diabolo.

View Article and Find Full Text PDF

The canonical point singularity of elliptically polarized light is an isolated point of circular polarization, a C point. As one recedes from such a point the surrounding polarization figures evolve into ellipses characterized by a major axis of length a, a minor axis of length b, and an azimuthal orientational angle alpha: at the C point itself, alpha is singular (undefined) and a and b are degenerate. The profound effects of the singularity in alpha on the orientation of the ellipses surrounding the C point have been extensively studied both theoretically and experimentally for over two decades.

View Article and Find Full Text PDF