Publications by authors named "Egli I"

Ferrous ammonium phosphate (FAP) is an iron salt that has been developed for the fortification of food matrices sensitive to color and flavor changes. The objective of the study was to measure iron absorption from FAP in young children and compare it to a previous evaluation of FAP in young women. A double-blind randomized crossover study with two parallel arms was used to evaluate the iron absorption from FAP added to reconstituted milk powder in comparison to that from ferrous sulfate (FeSO4) and ferric pyrophosphate (FePP).

View Article and Find Full Text PDF

Background: Iron deficiency is a major public health concern in Ethiopia, where the traditional diet is based on tef injera. Iron absorption from injera is low due to its high phytic acid (PA) content.

Objectives: We investigated ways to increase iron absorption from FeSO4-fortified tef injera in normal-weight healthy women (aged 21-29 y).

View Article and Find Full Text PDF

The high phytic acid (PA) concentration in the diet based on teff injera is a likely contributing cause of iron deficiency in Ethiopia. We monitored PA during teff injera fermentation in 30 households in Debre Zeyit, Ethiopia and evaluated its influence on iron bioavailability, considering contaminant soil iron in teff flour. After fermentation (48h), mean PA concentration in injera batter decreased from 0.

View Article and Find Full Text PDF

Different metabolic pathways of supplemental and fortification Fe, or inhibition of Zn absorption by Fe, may explain adverse effects of supplemental Fe in Fe-sufficient infants. We determined whether the mode of oral Fe administration or the amount habitually consumed affects Fe absorption and systemic Fe utilisation in infants, and assessed the effects of these interventions on Zn absorption, Fe and Zn status, and growth. Fe-sufficient 6-month-old infants (n 72) were randomly assigned to receive 6·6 mg Fe/d from a high-Fe formula, 1·3 mg Fe/d from a low-Fe formula or 6·6 mg Fe/d from Fe drops and a formula with no added Fe for 45 d.

View Article and Find Full Text PDF

Background: Food-based strategies to reduce nutritional iron deficiency have not been universally successful. Biofortification has the potential to become a sustainable, inexpensive, and effective solution.

Objective: This randomized controlled trial was conducted to determine the efficacy of iron-biofortified beans (Fe-Beans) to improve iron status in Rwandan women.

View Article and Find Full Text PDF

Purpose: An iron-enriched yeast able to lyse at body temperature was developed for iron fortification of chilled dairy products. The aim was to evaluate iron (Fe) absorption from iron-enriched yeast or ferrous sulfate added to fresh cheese.

Methods: Two stable isotope studies with a crossover design were conducted in 32 young women.

View Article and Find Full Text PDF

Background: The common bean is a staple crop in many African and Latin American countries and is the focus of biofortification initiatives. Bean iron concentration has been doubled by selective plant breeding, but the additional iron is reported to be of low bioavailability, most likely due to high phytic acid (PA) concentrations.

Objective: The present study evaluated the impact of PA on iron bioavailability from iron-biofortified beans.

View Article and Find Full Text PDF

Ethiopian injera, a soft pancake, baked from fermented batter, is preferentially prepared from tef (Eragrostis tef) flour. The phytic acid (PA) content of tef is high and is only partly degraded during the fermentation step. PA chelates with iron and zinc in the human digestive tract and strongly inhibits their absorption.

View Article and Find Full Text PDF

The iron storage protein ferritin is a potential vehicle to enhance the iron content of biofortified crops. With the aim of evaluating the potential of ferritin iron in plant breeding, we used species-specific isotope dilution mass spectrometry to quantify ferritin iron in bean varieties with a wide range of total iron content. Zinc, phytic acid, and polyphenols were also measured.

View Article and Find Full Text PDF

Background: After the oral administration of iron, the production of circulating non-transferrin-bound iron may contribute to an increased risk of illness in malaria-endemic areas that lack effective medical services.

Objective: In healthy women with a range of body iron stores, we aimed to determine effects on the production of circulating non-transferrin-bound iron resulting from the oral administration of 1) a supplemental dose of iron (60 mg) with water, 2) a supplemental dose of iron (60 mg) with a standard test meal, and 3) a fortification dose of iron (6 mg) with a standard test meal.

Design: With the use of serum ferritin as the indicator, healthy women with replete iron stores (ferritin concentration >25 μg/L; n = 16) and reduced iron stores (ferritin concentration ≤25 μg/L; n = 16) were enrolled in a prospective, randomized, crossover study.

View Article and Find Full Text PDF

Food-to-food fortification can be a promising approach to improve the low dietary iron intake and bioavailability from monotonous diets based on a small number of staple plant foods. In Burkina Faso, the common diet consists of a thick, cereal-based paste consumed with sauces composed of mainly green leaves, such as amaranth and jute leaves. Increasing the quantity of leaves in the sauces substantially increases their iron concentration.

View Article and Find Full Text PDF

Low iron and high phytic acid content make fonio based meals a poor source of bioavailable iron. Phytic acid degradation in fonio porridge using whole grain cereals as phytase source and effect on iron bioavailability when added to iron fortified fonio meals were investigated. Grains, nuts and seeds collected in Mali markets were screened for phytic acid and phytase activity.

View Article and Find Full Text PDF

In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes.

View Article and Find Full Text PDF

Iron biofortification of pearl millet (Pennisetum glaucum) is a promising approach to combat iron deficiency (ID) in the millet-consuming communities of developing countries. To evaluate the potential of iron-biofortified millet to provide additional bioavailable iron compared with regular millet and post-harvest iron-fortified millet, an iron absorption study was conducted in 20 Beninese women with marginal iron status. Composite test meals consisting of millet paste based on regular-iron, iron-biofortified, or post-harvest iron-fortified pearl millet flour accompanied by a leafy vegetable sauce or an okra sauce were fed as multiple meals for 5 d.

View Article and Find Full Text PDF

Iron bioavailability from common beans is negatively influenced by phytic acid (PA) and polyphenols (PPs). Newly developed low-PA (lpa) beans with 90% less PA and variable PPs might improve iron bioavailability. The aim of this study was to evaluate the influence of lpa beans on iron bioavailability in women (n = 20).

View Article and Find Full Text PDF

Home fortification with lipid-based nutrient supplements (LNSs) is a promising approach to improve bioavailable iron and energy intake of young children in developing countries. To optimize iron bioavailability from an LNS named complementary food fortificant (CFF), 3 stable isotope studies were conducted in 52 young Beninese children. Test meals consisted of millet porridge mixed with CFF and ascorbic acid (AA).

View Article and Find Full Text PDF

Iron-deficiency anemia is associated with adverse neonatal health outcomes. Iron status and its determinants were assessed in a representative sample of Belgian pregnant women. Blood samples were collected and a questionnaire was completed face-to-face.

View Article and Find Full Text PDF

Background: Ferric sodium ethylenediaminetetraacetate (NaFeEDTA) enhances iron absorption in the presence of phytate. However, the amount of NaFeEDTA that would have to be added to a complementary food to provide the necessary intake of iron for an infant or young child if NaFeEDTA were the sole iron fortificant exceeds the Acceptable Daily Intake (ADI) of EDTA for this age group. EDTA increases iron absorption at a molar ratio EDTA:iron of less than 1:1.

View Article and Find Full Text PDF

Background: Bioavailability of nonheme iron is influenced by the concentration of inhibitors and enhancers in the diet. The fructans inulin and oligofructose have been shown to improve iron absorption in animals through colonic uptake, but this has not been confirmed in humans.

Objective: The aim of the intervention study was to evaluate the influence of inulin on iron absorption, bifidobacteria, total bacteria, short-chain fatty acids (SCFAs), and fecal pH in women with low iron status (plasma ferritin <25 μg/L).

View Article and Find Full Text PDF

Biofortification of plants is a new approach to combat iron deficiency. Common beans (Phaseolus vulgaris) can be bred with a higher iron concentration but are rich in iron absorption inhibitors, phytic acid (PA), and polyphenols (PP). To evaluate the potential of beans to combat iron deficiency, three iron absorption studies were carried out in 61 Rwandese women with low iron status.

View Article and Find Full Text PDF

The absorption profile of iron fortificants may be a determinant of their ability to generate nontransferrin-bound iron (NTBI) and, thus, their potential safety. Ferrous iron may be absorbed more rapidly than chelated ferric iron, but differences at the fortification level cannot be distinguished with nonisotopically labeled serum iron curves. Using stable isotope appearance curves (SIAC) in serum, we measured iron absorption profiles from FeSO(4) with ascorbic acid (AA) and from NaFeEDTA, as well as the serum hepcidin and NTBI response following the meals.

View Article and Find Full Text PDF

Fe absorption from water-soluble forms of Fe is inversely proportional to Fe status in humans. Whether this is true for poorly soluble Fe compounds is uncertain. Our objectives were therefore (1) to compare the up-regulation of Fe absorption at low Fe status from ferrous sulphate (FS) and ferric pyrophosphate (FPP) and (2) to compare the efficacy of FS with FPP in a fortification trial to increase body Fe stores in Fe-deficient children v.

View Article and Find Full Text PDF

Background: Iron deficiency anemia (IDA) affects many young women in sub-Saharan Africa. Its etiology is multifactorial, but the major cause is low dietary iron bioavailability exacerbated by parasitic infections such as malaria.

Objective: We investigated whether asymptomatic Plasmodium falciparum parasitemia in Beninese women would impair absorption of dietary iron or utilization of circulating iron.

View Article and Find Full Text PDF

Low iron absorption from common beans might contribute to iron deficiency in countries where beans are a staple food. High levels of phytic acid (PA) and polyphenols (PP) inhibit iron absorption; however, the effect of bean PP on iron absorption in humans has not been demonstrated and, with respect to variety selection, the relative importance of PP and PA is unclear. To evaluate the influence of bean PP relative to PA on iron absorption in humans, 6 stable iron isotope absorption studies were conducted in women (16 or 17 per study).

View Article and Find Full Text PDF

Iron differs from other minerals because iron balance in the human body is regulated by absorption only because there is no physiologic mechanism for excretion. On the basis of intake data and isotope studies, iron bioavailability has been estimated to be in the range of 14-18% for mixed diets and 5-12% for vegetarian diets in subjects with no iron stores, and these values have been used to generate dietary reference values for all population groups. Dietary factors that influence iron absorption, such as phytate, polyphenols, calcium, ascorbic acid, and muscle tissue, have been shown repeatedly to influence iron absorption in single-meal isotope studies, whereas in multimeal studies with a varied diet and multiple inhibitors and enhancers, the effect of single components has been, as expected, more modest.

View Article and Find Full Text PDF