AbstractThe temperature-size rule is one of the universal rules in ecology and states that ectotherms in warmer waters will grow faster as juveniles, mature at smaller sizes and younger ages, and reach smaller maximum body sizes. Many models have unsuccessfully attempted to reproduce temperature-size rule-consistent life histories by using two-term (anabolism and catabolism) Pütter-type growth models, such as the von Bertalanffy. Here, we present a physiologically structured individual growth model, which incorporates an energy budget and optimizes energy allocation to growth, reproduction, and reserves.
View Article and Find Full Text PDFMany inland ecosystems (lakes, rivers, reservoirs, lagoons) around the world undergo regular biological monitoring surveys, including monitoring the abundance, biomass and size structure of fish communities. Yet, the majority of fish monitoring datasets for inland ecosystems remain inaccessible. This is especially true for historical datasets from the early and middle 20 century, despite their immense importance for establishing baselines of ecosystem status (e.
View Article and Find Full Text PDFThe three-spined stickleback (Gasterosteus aculeatus L., hereafter 'stickleback') is a common mesopredatory fish in marine, coastal and freshwater areas. In large parts of the Baltic Sea, stickleback densities have increased >10-fold during the last decades, and it is now one of the dominating fish species both in terms of biomass and effects on lower trophic levels.
View Article and Find Full Text PDFConflict arises in fisheries worldwide when piscivorous birds target fish species of commercial value. This paper presents a method for estimating size selectivity functions for piscivores and uses it to compare predation selectivities of Great Cormorants (Phalacrocorax carbo sinensis L. 1758) with that of gill-net fishing on a European perch (Perca fluviatilis L.
View Article and Find Full Text PDF