All living organisms must respond to, and defend against, environmental stresses. Depending on the extent and severity of stress, cells try to alter their metabolism and adapt to a new state. Changes in alternative splicing of pre-mRNA are a crucial regulation mechanism through which cells are able to respond to a decrease in oxygen tension in the cellular environment.
View Article and Find Full Text PDFAlternative pre-mRNA splicing plays a very important role in expanding protein diversity as it generates numerous transcripts from a single protein-coding gene. Therefore, alterations lead this process to neurological human disorders, including Alzheimer's and Parkinson's diseases. Moreover, accumulating evidence indicates that the splicing machinery highly contributes to the cells' ability to adapt to different altered cellular microenvironments, such as hypoxia.
View Article and Find Full Text PDFThe splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Hypoxia also plays a key role in the pathophysiology of many disease states. Recent studies have revealed that tumorigenesis and hypoxia are involved in large-scale alterations in alternative pre-mRNA splicing.
View Article and Find Full Text PDFThe removal of introns from mRNA precursors (pre-mRNAs) is an essential step in eukaryotic gene expression. The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Hypoxia also plays a key role in the pathophysiology of many diseases, including Alzheimer's disease (AD).
View Article and Find Full Text PDFThe removal of introns from mRNA precursors (pre-mRNAs) is an essential step in eukaryotic gene expression. The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Hypoxia also plays a key role in the pathophysiology of many disease states.
View Article and Find Full Text PDFBackground: An abundant class of intronic microRNAs (miRNAs) undergoes atypical Drosha-independent biogenesis in which the spliceosome governs the excision of hairpin miRNA precursors, called mirtrons. Although nearly 500 splicing-dependent miRNA candidates have been recently predicted via bioinformatic analysis of human RNA-Seq datasets, only a few of them have been experimentally validated. The detailed mechanism of miRNA processing by the splicing machinery and the roles of mirtronic miRNAs in cancer are yet to be uncovered.
View Article and Find Full Text PDFBackground: Cell lines derived from human tumors have been extensively used as experimental models of neoplastic disease. Although such cell lines differ from both normal and cancerous tissue.
Objective: The data obtained used DNA and RNA microarray systems does not give full information about protein expression levels in cells and tissues.
The removal of introns from mRNA precursors (pre-mRNAs) is an essential step in eukaryotic gene expression. The splicing machinery heavily contributes to biological complexity and especially to the ability of cells to adapt to altered cellular conditions. Inhibitory PAS domain protein (IPAS), a dominant negative regulator of hypoxia-inducible gene expression, is generated from hypoxia inducible transcription factor-3α (HIF-3α) pre-mRNA by an alternative splicing mechanism.
View Article and Find Full Text PDFMonoamine oxidase B (MAO-B) plays an important role in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. Increased levels of MAO-B mRNA and enzymatic activity have been reported in platelets from patients with Parkinson's and Alzheimer's diseases, however the triggers of enhanced mRNA levels are unknown. Our results demonstrate for the first time that G/A dimorphism in intron 13 sequence creates splicing enhancer thus stimulating intron 13 removal efficiency.
View Article and Find Full Text PDF