Optical nonlinear spectroscopies carry a high amount of information about the systems under investigation; however, as they report polarization signals, the resulting spectra are often congested and difficult to interpret. To recover the landscape of energy states and physical processes such as energy and electron transfer, a clear interpretation of the nonlinear signals is prerequisite. Here, we focus on the interpretation of the electrochromic band-shift signal, which is generated when an internal electric field is established in the system following optical excitation.
View Article and Find Full Text PDFOver the last several decades, the light-harvesting protein complexes of purple bacteria have been among the most popular model systems for energy transport in excitonic systems in the weak and intermediate intermolecular coupling regime. Despite this extensive body of scientific work, significant questions regarding the excitonic states and the photo-induced dynamics remain. Here, we address the low-temperature electronic structure and excitation dynamics in the light-harvesting complex 2 of Rhodopseudomonas acidophila by two-dimensional electronic spectroscopy.
View Article and Find Full Text PDF