Bioengineering (Basel)
December 2023
There are several ways in which mathematical modeling is used in fermentation control, but mechanistic mathematical genome-scale models of metabolism within the cell have not been applied or implemented so far. As part of the metabolic engineering task setting, we propose that metabolite fluxes and/or biomass growth rate be used to search for a fermentation steady state marker rule. During fermentation, the bioreactor control system can automatically detect the desired steady state using a logical marker rule.
View Article and Find Full Text PDFFinding the best knockout strategy for coupling biomass growth and production of a target metabolite using a mathematic model of metabolism is a challenge in biotechnology. In this research, a three-step method named OptEnvelope is presented based on finding minimal set of active reactions for a target point in the feasible solution space (envelope) using a mixed-integer linear programming formula. The method initially finds the reduced desirable solution space envelope in the product versus biomass plot by removing all inactive reactions.
View Article and Find Full Text PDFSuccessful transition to a circular bioeconomy relies on the availability and efficient use of organic feedstocks such as agricultural and food waste. Advances in industrial biotechnology provide novel tools to valorize these feedstocks differently. Less attention, however, has been directed towards assessment of the organic side-residues arising from industrial biotechnology, such as spent microbial biomass (SMB).
View Article and Find Full Text PDFDocosahexaenoic acid (DHA) is one of the most important long-chain polyunsaturated fatty acids (LC-PUFAs), with numerous health benefits. , a marine heterotrophic dinoflagellate, is successfully used for the industrial production of DHA because it can accumulate DHA at high concentrations within the cells. Glycerol is an interesting renewable substrate for DHA production since it is a by-product of biodiesel production and other industries, and is globally generated in large quantities.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2021
Industrial biotechnology represents one of the most innovating and labour-productive industries with an estimated stable economic growth, thus giving space for improvement of the existing and setting up new value chains. In addition, biotechnology has clear environmental advantages over the chemical industry. Still, biotechnology's environmental contribution is sometimes valued with controversy and societal aspects are frequently ignored.
View Article and Find Full Text PDFBackground: Metformin has been used for the treatment of type 2 diabetes for over 60 years; however, its mechanism of pharmacological action is not fully clear. Different hypotheses exist regarding metformin distribution and redistribution mechanisms between plasma and erythrocytes/red blood cells (RBCs).
Objective: We aimed to test the hypothesis that the metformin distribution between plasma and RBC occurs via concentration difference-driven passive transport and estimated transport rate coefficient values based on metformin concentration time series in plasma and RBCs from in vivo studies.
Marine heterotrophic dinoflagellate Crypthecodinium cohnii is an aerobic oleaginous microorganism that accumulates intracellular lipid with high content of 4,7,10,13,16,19-docosahexaenoic acid (DHA), a polyunsaturated ω-3 (22:6) fatty acid with multiple health benefits. C. cohnii can grow on glucose and ethanol, but not on sucrose or fructose.
View Article and Find Full Text PDFMetformin is the primary drug for type 2 diabetes treatment and a promising candidate for other disease treatment. It has significant deviations between individuals in therapy efficiency and pharmacokinetics, leading to the administration of an unnecessary overdose or an insufficient dose. There is a lack of data regarding the concentration-time profiles in various human tissues that limits the understanding of pharmacokinetics and hinders the development of precision therapies for individual patients.
View Article and Find Full Text PDFSystems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields.
View Article and Find Full Text PDFOne of use cases for metabolic network optimisation of biotechnologically applied microorganisms is the in silico design of new strains with an improved distribution of metabolic fluxes. Global stochastic optimisation methods (genetic algorithms, evolutionary programing, particle swarm and others) can optimise complicated nonlinear kinetic models and are friendly for unexperienced user: they can return optimisation results with default method settings (population size, number of generations and others) and without adaptation of the model. Drawbacks of these methods (stochastic behaviour, undefined duration of optimisation, possible stagnation and no guaranty of reaching optima) cause optimisation result misinterpretation risks considering the very diverse educational background of the systems biology and synthetic biology research community.
View Article and Find Full Text PDFThe implementation of model-based designs in metabolic engineering and synthetic biology may fail. One of the reasons for this failure is that only a part of the real-world complexity is included in models. Still, some knowledge can be simplified and taken into account in the form of optimization constraints to improve the feasibility of model-based designs of metabolic pathways in organisms.
View Article and Find Full Text PDFSystems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner.
View Article and Find Full Text PDFThe application of biologically and biochemically relevant constraints during the optimization of kinetic models reduces the impact of suggested changes in processes not included in the scope of the model. This increases the probability that the design suggested by model optimization can be carried out by an organism after implementation of design in vivo. A case study was carried out to determine the impact of total enzyme activity and homeostatic constraints on the objective function values and the following ranking of adjustable parameter combinations.
View Article and Find Full Text PDFMotivation: Due to their universal applicability, global stochastic optimization methods are popular for designing improvements of biochemical networks. The drawbacks of global stochastic optimization methods are: (i) no guarantee of finding global optima, (ii) no clear optimization run termination criteria and (iii) no criteria to detect stagnation of an optimization run. The impact of these drawbacks can be partly compensated by manual work that becomes inefficient when the solution space is large due to combinatorial explosion of adjustable parameters or for other reasons.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
March 2018
Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited.
View Article and Find Full Text PDFMathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.
View Article and Find Full Text PDFZymomonas mobilis, an ethanol-producing bacterium, possesses the Entner-Doudoroff (E-D) pathway, pyruvate decarboxylase and two alcohol dehydrogenase isoenzymes for the fermentative production of ethanol and carbon dioxide from glucose. Using available kinetic parameters, we have developed a kinetic model that incorporates the enzymic reactions of the E-D pathway, both alcohol dehydrogenases, transport reactions and reactions related to ATP metabolism. After optimizing the reaction parameters within likely physiological limits, the resulting kinetic model was capable of simulating glycolysis in vivo and in cell-free extracts with good agreement with the fluxes and steady-state intermediate concentrations reported in previous experimental studies.
View Article and Find Full Text PDFA visual analysis of reconstructions and large stoichiometric models with elastic change of the visualization scope and representation methods becomes increasingly important due to the rapidly growing size and number of available reconstructions. The Paint4Net is a novel COBRA Toolbox extension for automatic generation of a hypergraph layout of defined scope with the steady state rates of reaction fluxes of stoichiometric models. Directionalities and fluxes of reactions are constantly represented in the visualization while detailed information about reaction (ID, name and synonyms, and formula) and metabolite (ID, name and synonyms, and charged formula) appears placing the cursor on the item of interest.
View Article and Find Full Text PDFDynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable.
View Article and Find Full Text PDF