The research groups in computer vision, graphics, and machine learning have dedicated a substantial amount of attention to the areas of 3D object reconstruction, augmentation, and registration. Deep learning is the predominant method used in artificial intelligence for addressing computer vision challenges. However, deep learning on three-dimensional data presents distinct obstacles and is now in its nascent phase.
View Article and Find Full Text PDFThe computer vision, graphics, and machine learning research groups have given a significant amount of focus to 3D object recognition (segmentation, detection, and classification). Deep learning approaches have lately emerged as the preferred method for 3D segmentation problems as a result of their outstanding performance in 2D computer vision. As a result, many innovative approaches have been proposed and validated on multiple benchmark datasets.
View Article and Find Full Text PDFChanges in the ungulate population density in the wild has impacts on both the wildlife and human society. In order to control the ungulate population movement, monitoring systems such as camera trap networks have been implemented in a non-invasive setup. However, such systems produce a large number of images as the output, hence making it very resource consuming to manually detect the animals.
View Article and Find Full Text PDFDepression is a public health issue that severely affects one's well being and can cause negative social and economic effects to society. To raise awareness of these problems, this research aims at determining whether the long-lasting effects of depression can be determined from electroencephalographic (EEG) signals. The article contains an accuracy comparison for SVM, LDA, NB, kNN, and D3 binary classifiers, which were trained using linear (relative band power, alpha power variability, spectral asymmetry index) and nonlinear (Higuchi fractal dimension, Lempel-Ziv complexity, detrended fluctuation analysis) EEG features.
View Article and Find Full Text PDFIn this research work, machine learning techniques are used to classify magnetic resonance imaging brain scans of people with Alzheimer's disease. This work deals with binary classification between Alzheimer's disease and cognitively normal. Supervised learning algorithms were used to train classifiers in which the accuracies are being compared.
View Article and Find Full Text PDFAction recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject's privacy.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2016
Health issues for elderly people may lead to different injuries obtained during simple activities of daily living (ADL). Potentially the most dangerous are unintentional falls that may be critical or even lethal to some patients due to the heavy injury risk. Many fall detection systems are proposed but only recently such health care systems became available.
View Article and Find Full Text PDF