Publications by authors named "Egidio Falotico"

Catastrophic forgetting is a phenomenon in which a neural network, upon learning a new task, struggles to maintain its performance on previously learned tasks. It is a common challenge in the realm of continual learning (CL) through neural networks. The mammalian brain addresses catastrophic forgetting by consolidating memories in different parts of the brain, involving the hippocampus and the neocortex.

View Article and Find Full Text PDF
Article Synopsis
  • The Modular-Integrative Modeling approach is a new framework in neuroscience designed to create brain models that accurately reflect biological processes.
  • It aims to combine realistic biological elements with functional performance, offering a comprehensive understanding of how the brain interacts with the body and environment.
  • This perspective emphasizes the importance of integrating different aspects of brain function for a better overall view of neuroscience.
View Article and Find Full Text PDF

Considering the variability and heterogeneity of motor impairment in children with Movement Disorders (MDs), the assessment of postural control becomes essential. For its assessment, only a few tools objectively quantify and recognize the difference among children with MDs. In this study, we use the Virtual Reality Rehabilitation System (VRRS) for assessing the postural control in children with MD.

View Article and Find Full Text PDF

This paper presents Soft DAgger, an efficient imitation learning-based approach for training control solutions for soft robots. To demonstrate the effectiveness of the proposed algorithm, we implement it on a two-module soft robotic arm involved in the task of writing letters in 3D space. Soft DAgger uses a dynamic behavioral map of the soft robot, which maps the robot's task space to its actuation space.

View Article and Find Full Text PDF

The sense of touch plays a fundamental role in enabling us to interact with our surrounding environment. Indeed, the presence of tactile feedback in prostheses greatly assists amputees in doing daily tasks. In this line, the present study proposes an integration of artificial tactile and proprioception receptors for texture discrimination under varying scanning speeds.

View Article and Find Full Text PDF

Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly heterogeneous diagnostic category, encompassing several endophenotypes and comorbidities, including sleep problems. However, no predictor of clinical long-term trajectories or comorbidity has yet been established. Sleep EEG has been proposed as a potential tool for evaluating the synaptic strength during development, as well as the cortical thickness, which is presumed to be altered in ADHD.

View Article and Find Full Text PDF

Saccadic eye-movements play a crucial role in visuo-motor control by allowing rapid foveation onto new targets. However, the neural processes governing saccades adaptation are not fully understood. Saccades, due to the short-time of execution (20-100 ms) and the absence of sensory information for online feedback control, must be controlled in a ballistic manner.

View Article and Find Full Text PDF

Conflictual cues and unexpected changes in human real-case scenarios may be detrimental to the execution of tasks by artificial agents, thus affecting their performance. Meta-learning applied to reinforcement learning may enhance the design of control algorithms, where an outer learning system progressively adjusts the operation of an inner learning system, leading to practical benefits for the learning schema. Here, we developed a brain-inspired meta-learning framework for inhibition cognitive control that i) exploits the meta-learning principles in the neuromodulation theory proposed by Doya, ii) relies on a well-established neural architecture that contains distributed learning systems in the human brain, and iii) proposes optimization rules of meta-learning hyperparameters that mimic the dynamics of the major neurotransmitters in the brain.

View Article and Find Full Text PDF

Parkinson's disease (PD) is known to affect the brain motor circuits involving the basal ganglia (BG) and to induce, among other signs, general slowness and paucity of movements. In upper limb movements, PD patients show a systematic prolongation of movement duration while maintaining a sufficient level of endpoint accuracy. PD appears to cause impairments not only in movement execution, but also in movement initiation and planning, as revealed by abnormal preparatory activity of motor-related brain areas.

View Article and Find Full Text PDF

Recent studies have identified rotational dynamics in motor cortex (MC), which many assume arise from intrinsic connections in MC. However, behavioral and neurophysiological studies suggest that MC behaves like a feedback controller where continuous sensory feedback and interactions with other brain areas contribute substantially to MC processing. We investigated these apparently conflicting theories by building recurrent neural networks that controlled a model arm and received sensory feedback from the limb.

View Article and Find Full Text PDF

Touch and pain sensations are complementary aspects of daily life that convey crucial information about the environment while also providing protection to our body. Technological advancements in prosthesis design and control mechanisms assist amputees to regain lost function but often they have no meaningful tactile feedback or perception. In the present study, we propose a bio-inspired tactile system with a population of 23 digital afferents: 12 RA-I, 6 SA-I, and 5 nociceptors.

View Article and Find Full Text PDF

Cerebellar synaptic plasticity is vital for adaptability and fine tuning of goal-directed movements. The perceived sensory errors between desired and actual movement outcomes are commonly considered to induce plasticity in the cerebellar synapses, with an objective to improve desirability of the executed movements. In rapid goal-directed eye movements called saccades, the only available sensory feedback is the direction of reaching error information received only at end of the movement.

View Article and Find Full Text PDF

Being able to replicate real experiments with computational simulations is a unique opportunity to refine and validate models with experimental data and redesign the experiments based on simulations. However, since it is technically demanding to model all components of an experiment, traditional approaches to modeling reduce the experimental setups as much as possible. In this study, our goal is to replicate all the relevant features of an experiment on motor control and motor rehabilitation after stroke.

View Article and Find Full Text PDF

In the present research, we explore the possibility of utilizing a hardware-based neuromorphic approach to develop a tactile sensory system at the level of first-order afferents, which are slowly adapting type 1 (SA-I) and fast adapting type 1 (FA-I) afferents. Four spiking models are used to mimic neural signals of both SA-I and FA-I primary afferents. Next, a digital circuit is designed for each spiking model for both afferents to be implemented on the field-programmable gate array (FPGA).

View Article and Find Full Text PDF

The cerebellum, which is responsible for motor control and learning, has been suggested to act as a Smith predictor for compensation of time-delays by means of internal forward models. However, insights about how forward model predictions are integrated in the Smith predictor have not yet been unveiled. To fill this gap, a novel bio-inspired modular control architecture that merges a recurrent cerebellar-like loop for adaptive control and a Smith predictor controller is proposed.

View Article and Find Full Text PDF

In traditional robotics, model-based controllers are usually needed in order to bring a robotic plant to the next desired state, but they present critical issues when the dimensionality of the control problem increases and disturbances from the external environment affect the system behavior, in particular during locomotion tasks. It is generally accepted that the motion control of quadruped animals is performed by neural circuits located in the spinal cord that act as a Central Pattern Generator and can generate appropriate locomotion patterns. This is thought to be the result of evolutionary processes that have optimized this network.

View Article and Find Full Text PDF

One of the big challenges in robotics is to endow agents with autonomous and adaptive capabilities. With this purpose, we embedded a cerebellum-based control system into a humanoid robot that becomes capable of handling dynamical external and internal complexity. The cerebellum is the area of the brain that coordinates and predicts the body movements throughout the body-environment interactions.

View Article and Find Full Text PDF

Traditionally, human vision research has focused on specific paradigms and proposed models to explain very specific properties of visual perception. However, the complexity and scope of modern psychophysical paradigms undermine the success of this approach. For example, perception of an element strongly deteriorates when neighboring elements are presented in addition (visual crowding).

View Article and Find Full Text PDF

The complex motion abilities of the Octopus vulgaris have been an intriguing research topic for biologists and roboticists alike. Various studies have been conducted on the underlying control architectures employed by these high dimensional biological organisms. Researchers have attempted to replicate these architectures on robotic systems.

View Article and Find Full Text PDF

Recent electrophysiological observations related to saccadic eye movements in rhesus monkeys, suggest a prediction of the sensory consequences of movement in the Purkinje cell layer of the cerebellar oculomotor vermis (OMV). A definite encoding of real-time motion of the eye has been observed in simple-spike responses of the combined burst-pause Purkinje cell populations, organized based upon their complex-spike directional tuning. However, the underlying control mechanisms that could lead to such action encoding are still unclear.

View Article and Find Full Text PDF

Inspired by the biology of human tactile perception, a hardware neuromorphic approach is proposed for spiking model of mechanoreceptors to encode the input force. In this way, a digital circuit is designed for a slowly adapting type I (SA-I) and fast adapting type I (FA-I) mechanoreceptors to be implemented on a low-cost digital hardware, such as field-programmable gate array (FPGA). This system computationally replicates the neural firing responses of both afferents.

View Article and Find Full Text PDF

With the rise of soft robotics technology and applications, there have been increasing interests in the development of controllers appropriate for their particular design. Being fundamentally different from traditional rigid robots, there is still not a unified framework for the design, analysis, and control of these high-dimensional robots. This review article attempts to provide an insight into various controllers developed for continuum/soft robots as a guideline for future applications in the soft robotics field.

View Article and Find Full Text PDF