Publications by authors named "Eghbal-Ahmadi M"

Introduction: Patient-reported outcomes (PROs) play an increasingly pivotal role in confirmatory clinical trials with pressures to develop drug differentiation strategies. Claims based on primary endpoints that are included in the product label are likely to be fully promoted by the manufacturers; however, the extent to which manufacturers promote claims based on secondary PRO endpoints is unknown. The purpose of this review is to assess the extent of promotion of PRO label claims for 6 pharmaceutical products with nonprimary PRO endpoints.

View Article and Find Full Text PDF

Febrile seizures (FSs) typically occur at the onset of fever and do not recur within the same febrile episode despite enduring or increased hyperthermia. Recurrent seizures during the same febrile episode are considered "complex," with potentially altered prognosis. A characterized immature rat model of FS was used to test the hypotheses that (1) a first FS influences the threshold temperature for subsequent ones, and (2) the underlying mechanisms involve the release and actions of the endogenous inhibitory hippocampal neuropeptide Y (NPY).

View Article and Find Full Text PDF

Do seizures cause neuronal death? At least in the immature hippocampus, this may not be the critical question for determining the mechanisms of epileptogenesis. Neuronal injury and death have clearly been shown to occur in most epilepsy models in the mature brain, and are widely considered a prerequisite to seizure-induced epilepsy. In contrast, little neuronal death occurs after even a severe and prolonged seizure prior to the third postnatal week.

View Article and Find Full Text PDF

Febrile seizures, in addition to being the most common seizure type of the developing human, may contribute to the generation of subsequent limbic epilepsy. Our previous work has demonstrated that prolonged experimental febrile seizures in the immature rat model increased hippocampal excitability long term, enhancing susceptibility to future seizures. The mechanisms for these profound proepileptogenic changes did not require cell death and were associated with long-term slowed kinetics of the hyperpolarization-activated depolarizing current (I(H)).

View Article and Find Full Text PDF

West syndrome (WS) is associated with diverse etiological factors. This fact has suggested that there must be a 'final common pathway' for these etiologies, which operates on the immature brain to result in WS only at the maturational state present during infancy. Any theory for the pathogenesis of WS has to account for the unique features of this disorder.

View Article and Find Full Text PDF

Chronic stress early in postnatal life influences hormonal and behavioural responses to stress persistently, but the mechanisms and molecular cascades that are involved in this process have not been clarified. To approach these issues, a chronic stress paradigm for the neonatal rat, using limited bedding material to alter the cage environment, was devised. In 9-day-old rats subjected to this chronic stress for 1 week, significant and striking changes in the expression and release patterns of key molecules that govern the neuroendocrine stress responses were observed.

View Article and Find Full Text PDF

Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life.

View Article and Find Full Text PDF

The hormone corticotropin (ACTH) is employed as therapy for diverse neurological disorders, but the mechanisms for its efficacy remain unknown. ACTH promotes the release of adrenal steroids (glucocorticoids), and most ACTH effects on the central nervous system (CNS) have been attributed to activation of glucocorticoid receptors. However, in several human disorders, ACTH has therapeutic actions that differ qualitatively or quantitatively from those of steroids.

View Article and Find Full Text PDF

Febrile seizures are the most common type of developmental seizures, affecting up to 5% of children. Experimental complex febrile seizures involving the immature rat hippocampus led to a persistent lowering of seizure threshold despite an upregulation of inhibition. Here we provide a mechanistic resolution to this paradox by showing that, in the hippocampus of rats that had febrile seizures, the long-lasting enhancement of the widely expressed intrinsic membrane conductance Ih converts the potentiated synaptic inhibition to hyperexcitability in a frequency-dependent manner.

View Article and Find Full Text PDF

Early-life experiences, including maternal interaction, profoundly influence hormonal stress responses during adulthood. In rats, daily handling during a critical neonatal period leads to a significant and permanent modulation of key molecules that govern hormonal secretion in response to stress. Thus, hippocampal glucocorticoid receptor (GR) expression is increased, whereas hypothalamic CRH-messenger RNA (mRNA) levels and stress-induced glucocorticoid release are reduced in adult rats handled early in life.

View Article and Find Full Text PDF

Febrile seizures (FSs) constitute the most prevalent seizure type during childhood. Whether prolonged FSs alter limbic excitability, leading to spontaneous seizures (temporal lobe epilepsy) during adulthood, has been controversial. Recent data indicate that, in the immature rat model, prolonged FSs induce transient structural changes of some hippocampal pyramidal neurons and long-term functional changes of hippocampal circuitry.

View Article and Find Full Text PDF

Maternal deprivation (MDep) of neonatal rats significantly influences the hypothalamic-pituitary-adrenal (HPA) axis. This study hypothesized that GR-mRNA modulation constituted an early, critical mechanism for the acute effects of MDep on neuroendocrine stress-responses. GR-mRNA hybridization signal in hippocampal CA1, hypothalamic paraventricular nucleus (PVN) and frontal cortex was significantly reduced immediately following 24 h MDep.

View Article and Find Full Text PDF

The physiological consequences of activating corticotropin-releasing factor receptor type 2 (CRF2) are not fully understood. The neuroanatomic distribution of this CRF receptor family member is consistent with roles in mediating the actions of CRF and similar ligands on food intake control and integrative aspects of stress-related behaviors. However, CRF2 expression in the adult rat is not influenced by stress, corticosterone (CORT), or food intake.

View Article and Find Full Text PDF

Corticotropin releasing factor (CRF) activates two known receptor types, CRF1, and CRF2. In the adult rat brain, CRF2 has a distinct distribution pattern, suggesting that it may mediate functions exclusive of CRF1. The goal of this study was to determine the age-dependent distribution of CRF2-messenger RNA (CRF2-mRNA) in the rat brain.

View Article and Find Full Text PDF

The stress neurohormone corticotropin releasing factor (CRF) activates at least two receptor types. Expression of corticotropin releasing factor receptor type II (CRF2) has been demonstrated in the hypothalamic ventromedial nucleus (VMH) of the adult and developing rat, but the physiological functions of VMH-CRF2 have not been elucidated. The VMH has been documented as an important participant in the regulation of food intake and its interactions with the hypothalamic-pituitary-adrenal axis and circadian rhythms.

View Article and Find Full Text PDF