Background: Malaria remains a substantial public health burden among young children in sub-Saharan Africa and a highly efficacious vaccine eliciting a durable immune response would be a useful tool for controlling malaria. R21 is a malaria vaccine comprising nanoparticles, formed from a circumsporozoite protein and hepatitis B surface antigen (HBsAg) fusion protein, without any unfused HBsAg, and is administered with the saponin-based Matrix-M adjuvant. This study aimed to assess the safety and immunogenicity of the malaria vaccine candidate, R21, administered with or without adjuvant Matrix-M in adults naïve to malaria infection and in healthy adults from malaria endemic areas.
View Article and Find Full Text PDFBackground: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified Vaccinia Virus Ankara (MVA) vectored vaccines is a strategy previously shown to provide substantial protective efficacy against P. falciparum infection in United Kingdom adult Phase IIa sporozoite challenge studies (approximately 20-25% sterile protection with similar numbers showing clear delay in time to patency), and greater point efficacy in a trial in Kenyan adults.
Methodology: We conducted the first Phase IIb clinical trial assessing the safety, immunogenicity and efficacy of ChAd63 MVA ME-TRAP in 700 healthy malaria exposed children aged 5-17 months in a highly endemic malaria transmission area of Burkina Faso.
Background: Heterologous prime-boost vaccination with chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) encoding multiple epitope string thrombospondin-related adhesion protein (ME-TRAP) has shown acceptable safety and promising immunogenicity in African adult and pediatric populations. If licensed, this vaccine could be given to infants receiving routine childhood immunizations. We therefore evaluated responses to ChAd63 MVA ME-TRAP when co-administered with routine Expanded Program on Immunization (EPI) vaccines.
View Article and Find Full Text PDFHeterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8 T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia.
View Article and Find Full Text PDFMalaria transmission is in decline in some parts of Africa, partly due to the scaling up of control measures. If the goal of elimination is to be achieved, additional control measures including an effective and durable vaccine will be required. Studies utilising the prime-boost approach to deliver viral vectors encoding the pre-erythrocytic antigen ME-TRAP (multiple epitope thrombospondin-related adhesion protein) have shown promising safety, immunogenicity and efficacy in sporozoite challenge studies.
View Article and Find Full Text PDFMalar J
August 2016
Background: The safety and immunogenicity of PfAMA1, adjuvanted with Alhydrogel(®) was assessed in malaria-experienced Malian adults. The malaria vaccine, PfAMA1-FVO [25-545] is a recombinant protein Pichia pastoris-expressed AMA-1 from Plasmodium falciparum FVO clone adsorbed to Alhydrogel(®), the control vaccine was tetanus toxoid produced from formaldehyde detoxified and purified tetanus toxin.
Methods: A double blind randomized controlled phase 1 study enrolled and followed 40 healthy adults aged 18-55 years in Bandiagara, Mali, West Africa, a rural setting with intense seasonal transmission of P.
Malaria remains a significant global health burden and a vaccine would make a substantial contribution to malaria control. Chimpanzee Adenovirus 63 Modified Vaccinia Ankara Multiple epitope thrombospondin adhesion protein (ME-TRAP) and vaccination has shown significant efficacy against malaria sporozoite challenge in malaria-naive European volunteers and against malaria infection in Kenyan adults. Infants are the target age group for malaria vaccination; however, no studies have yet assessed T-cell responses in children and infants.
View Article and Find Full Text PDFLancet Infect Dis
January 2016
Background: The 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo).
Methods: In the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18-65 years from the University of Maryland medical community and the Baltimore community.
Objective: To assess the effectiveness of a multimedia informed consent tool for adults participating in a clinical trial in the Gambia.
Methods: Adults eligible for inclusion in a malaria treatment trial (n = 311) were randomized to receive information needed for informed consent using either a multimedia tool (intervention arm) or a standard procedure (control arm). A computerized, audio questionnaire was used to assess participants' comprehension of informed consent.
Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum.
View Article and Find Full Text PDFBackground: Clinical trials conducted in Africa often require substantial investments to support trial centres and public health facilities. Trial resources could potentially generate benefits for routine health service delivery but may have unintended consequences. Strengthening ethical practice requires understanding the potential effects of trial inputs on the perceptions and practices of routine health care providers.
View Article and Find Full Text PDFBackground: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak.
Methods: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom.
Background: International guidelines recommend the use of appropriate informed consent procedures in low literacy research settings because written information is not known to guarantee comprehension of study information.
Objectives: This study developed and evaluated a multimedia informed consent tool for people with low literacy in an area where a malaria treatment trial was being planned in The Gambia.
Methods: We developed the informed consent document of the malaria treatment trial into a multimedia tool integrating video, animations and audio narrations in three major Gambian languages.
Objective: To develop and psychometrically evaluate an audio digitised tool for assessment of comprehension of informed consent among low-literacy Gambian research participants.
Setting: We conducted this study in the Gambia where a high illiteracy rate and absence of standardised writing formats of local languages pose major challenges for research participants to comprehend consent information. We developed a 34-item questionnaire to assess participants' comprehension of key elements of informed consent.
To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data.
View Article and Find Full Text PDFPrior to a chimpanzee adenovirus-based (ChAd63) malarial vaccine trial, sera were collected to assess ChAd63-specific neutralizing antibody titers in Banfora (Burkina Faso). The low neutralizing antibody titers reported in both adults and children (median titers, 139.1 and 35.
View Article and Find Full Text PDFHuman immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) and malaria are among the most important infectious diseases in developing countries. Existing control strategies are unlikely to curtail these diseases in the absence of efficacious vaccines. Testing of HIV and malaria vaccines candidates start with early phase trials that are increasingly being conducted in developing countries where the burden of the diseases is high.
View Article and Find Full Text PDFPLoS One
September 2013
Background: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI).
Methodology: We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns.
This document is intended as a guide to the protocol development for trials of prophylactic vaccines. The template may serve phases I-IV clinical trials protocol development to include safety relevant information as required by the regulatory authorities and as deemed useful by the investigators. This document may also be helpful for future site strengthening efforts.
View Article and Find Full Text PDFExpert Rev Vaccines
December 2011
For over 10 years, the European Vaccine Initiative (EVI; European Malaria Vaccine Initiative until 2009) has contributed to the development of 24 malaria candidate vaccine antigens with 13 vaccine candidates being advanced into Phase I clinical trials, two of which have been transitioned for further clinical development in sub-Saharan Africa. Since its inception the EVI organization has operated as a funding agency, but with a clear service-oriented strategy. The scientific successes and difficulties encountered during these years and how these efforts have led to standardization and harmonization in vaccine development through large-scale European consortia are discussed.
View Article and Find Full Text PDFSince 2000, under the Fifth and subsequent Framework Programmes, the European Commission has funded research to spur the development of a malaria vaccine. This funding has contributed to the promotion of an integrated infrastructure consisting of European basic, applied and clinical scientists in academia and small and medium enterprises, together with partners in Africa. Research has added basic understanding of what is required of a malaria vaccine, allowing selected candidates to be prioritized and some to be moved forward into clinical trials.
View Article and Find Full Text PDFBackground: GMZ2 is a fusion protein of Plasmodium falciparum merozoite surface protein 3 (MSP3) and glutamate rich protein (GLURP) that mediates an immune response against the blood stage of the parasite. Two previous phase I clinical trials, one in naïve European adults and one in malaria-exposed Gabonese adults showed that GMZ2 was well tolerated and immunogenic. Here, we present data on safety and immunogenicity of GMZ2 in one to five year old Gabonese children, a target population for future malaria vaccine efficacy trials.
View Article and Find Full Text PDFMalaria is still one of the major public health threats in sub-Saharan Africa. An effective vaccine could be a sustainable control measure that can be integrated into existing health infrastructures. The malaria vaccine candidate GMZ2 is a recombinant fusion protein of conserved parts of Plasmodium falciparum Glutamate Rich Protein and Merozoite Surface Protein 3 adjuvanted with aluminium hydroxide.
View Article and Find Full Text PDFOver the past ten years, EMVI has continually strived to maintain its main goal of accelerating the development of candidate malaria vaccines by facilitating the translational gap between promising experimental malaria vaccines and subsequent clinical trials in Europe and in Africa. To date, EMVI has funded approximately ten vaccine formulations (antigen-adjuvant combination) by developing GMP materials and sponsoring subsequent human clinical trials. In recent years EMVI's role has expanded into harmonization activities relevant to malaria vaccine development as well as making contributions to global coordination efforts in the field of malaria vaccine research and development (R&D).
View Article and Find Full Text PDF