Classification of an object behind a random and unknown scattering medium sets a challenging task for computational imaging and machine vision fields. Recent deep learning-based approaches demonstrated the classification of objects using diffuser-distorted patterns collected by an image sensor. These methods demand relatively large-scale computing using deep neural networks running on digital computers.
View Article and Find Full Text PDFOptical coherence tomography (OCT) is a widely used non-invasive biomedical imaging modality that can rapidly provide volumetric images of samples. Here, we present a deep learning-based image reconstruction framework that can generate swept-source OCT (SS-OCT) images using undersampled spectral data, without any spatial aliasing artifacts. This neural network-based image reconstruction does not require any hardware changes to the optical setup and can be easily integrated with existing swept-source or spectral-domain OCT systems to reduce the amount of raw spectral data to be acquired.
View Article and Find Full Text PDF