The phonon-related properties of crystalline polymers are highly relevant for various applications. Their simulation is, however, particularly challenging, as the systems that need to be modeled are often too extended to be treated by ab initio methods, while classical force fields are too inaccurate. Machine-learned potentials parametrized against material-specific ab initio data hold the promise of being extremely accurate and also highly efficient.
View Article and Find Full Text PDFSide-chain engineering in molecular semiconductors provides a versatile toolbox for precisely manipulating the material's processability, crystallographic properties, as well as electronic and optoelectronic characteristics. This study explores the impact of integrating hydrophilic side chains, specifically oligoethylene glycol (OEG) units, into the molecular structure of the small molecule semiconductor, 2,7-bis(2(2-methoxy ethoxy)ethoxy) benzo[]benzo[4,5] thieno[2,3-] thiophene (OEG-BTBT). The investigation includes a comprehensive analysis of thin film morphology and crystallographic properties, along with the optimization of deposition parameters for improving the device performance.
View Article and Find Full Text PDFThe present study focuses on the spin-dependent vibrational properties of HKUST-1, a metal-organic framework with potential applications in gas storage and separation. Employing density functional theory (DFT), we explore the consequences of spin couplings in the copper paddle wheels (as the secondary building units of HKUST-1) on the material's vibrational properties. By systematically screening the impact of the spin state on the phonon bands and densities of states in the various frequency regions, we identify asymmetric -COO- stretching vibrations as being most affected by different types of magnetic couplings.
View Article and Find Full Text PDFPhonons play a crucial role in the thermodynamic and transport properties of solid materials. Nevertheless, rather little is known about phonons in organic semiconductors. Thus, we employ highly reliable quantum mechanical calculations for studying the phonons in the α-polymorph of quinacridone.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Self-assembled monolayers (SAMs) of ferrocene-substituted thiofluorene on Au(111) exhibit two distinct conductance states (CSs) in two-terminal junctions featuring a sharp tip of eutectic GaIn as the top electrode. The occurrence of these states and the resulting effective rectification by the SAM depend on the way the bias voltage is swept; when the junction is only negatively biased, the original, high CS is preserved, whereas the junction is switched to a low CS when applying only positive biases. This results in an exceptionally high effective rectification ratio (RR) of ∼2100 already at voltages as low as 0.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are a highly versatile group of porous materials suitable for a broad range of applications, which often crucially depend on the MOFs' heat transport properties. Nevertheless, detailed relationships between the chemical structure of MOFs and their thermal conductivities are still largely missing. To lay the foundations for developing such relationships, we performed non-equilibrium molecular dynamics simulations to analyze heat transport in a selected set of materials.
View Article and Find Full Text PDFControlling the physical and chemical properties of surfaces and interfaces is of fundamental relevance in various areas of physical chemistry and a key issue of modern nanotechnology. A highly promising strategy for achieving that control is the use of self-assembled monolayers (SAMs), which are ordered arrays of rodlike molecules bound to the substrate by a suitable anchoring group and carrying a functional tail group at the other end of the molecular backbone. Besides various other applications, SAMs are frequently used in organic electronics for the electrostatic engineering of interfaces by controlling the interfacial level alignment.
View Article and Find Full Text PDFBy studying the low-frequency phonon bands of a series of crystalline acenes, this article lays the foundation for the development of structure-property relationships for phonons in organic semiconductors. Combining state-of-the art quantum-mechanical simulations with simple classical models, we explain how and why phonon frequencies and group velocities do or do not change when varying the molecular and crystal structures of the materials.
View Article and Find Full Text PDFLiquid-phase, quasi-epitaxial growth is used to stack asymmetric, dipolar organic compounds on inorganic substrates, permitting porous, crystalline molecular materials that lack inversion symmetry. This allows material fabrication with built-in electric fields. A new programmed assembly strategy based on metal-organic frameworks (MOFs) is described that facilitates crystalline, noncentrosymmetric space groups for achiral compounds.
View Article and Find Full Text PDFCharge transport properties of metal-organic frameworks (MOFs) are of distinct interest for (opto)electronic applications. In contrast to the situation in molecular crystals, MOFs allow an extrinsic control of the relative arrangement of π-conjugated entities through the framework architecture. This suggests that MOFs should enable materials with particularly high through-space charge carrier mobilities.
View Article and Find Full Text PDFMolecules with tripodal anchoring to substrates represent a versatile platform for the fabrication of robust self-assembled monolayers (SAMs), complementing the conventional monopodal approach. In this context, we studied the adsorption of 1,8,13-tricarboxytriptycene (Trip-CA) on Ag(111), mimicked by a bilayer of silver atoms underpotentially deposited on Au. While tripodal SAMs frequently suffer from poor structural quality and inhomogeneous bonding configurations, the triptycene scaffold featuring three carboxylic acid anchoring groups yields highly crystalline SAM structures.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have attracted significant attention due to their chemical versatility combined with a significant number of potential applications. Of particular interest are two-dimensional COFs, where the organic building units are linked by covalent bonds within a plane. Most properties of these COFs are determined by the relative arrangement of neighboring layers.
View Article and Find Full Text PDFThe computational characterization of inorganic-organic hybrid interfaces is arguably one of the technically most challenging applications of density functional theory. Due to the fundamentally different electronic properties of the inorganic and the organic components of a hybrid interface, the proper choice of the electronic structure method, of the algorithms to solve these methods, and of the parameters that enter these algorithms is highly non-trivial. In fact, computational choices that work well for one of the components often perform poorly for the other.
View Article and Find Full Text PDFAprotic alkali metal-O batteries face two major obstacles to their chemistry occurring efficiently, the insulating nature of the formed alkali superoxides/peroxides and parasitic reactions that are caused by the highly reactive singlet oxygen (O). Redox mediators are recognized to be key for improving rechargeability. However, it is unclear how they affect O formation, which hinders strategies for their improvement.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2020
In recent years, optical and electronic properties of metal-organic frameworks (MOFs) have increasingly shifted into the focus of interest of the scientific community. Here, we discuss a strategy for conveniently tuning these properties through electrostatic design. More specifically, based on quantum-mechanical simulations, we suggest an approach for creating a gradient of the electrostatic potential within a MOF thin film, exploiting collective electrostatic effects.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2020
In recent years, charge transport in metal-organic frameworks (MOFs) has shifted into the focus of scientific research. In this context, systems with efficient through-space charge transport pathways resulting from -stacked conjugated linkers are of particular interest. In the current manuscript, we use density functional theory-based simulations to provide a detailed understanding of such MOFs, which, in the present case, are derived from the prototypical Zn(TTFTB) system (with TTFTB corresponding to tetrathiafulvalene tetrabenzoate).
View Article and Find Full Text PDFWhen employing self-assembled monolayers (SAMs) for tuning surface and interface properties, organic molecules that enable strong binding to the substrate, large-area structural uniformity, precise alignment of functional groups, and control of their density are highly desirable. To achieve these goals, tripod systems bearing multiple bonding sites have been developed as an alternative to conventional monodentate systems. Bonding of all three sites has, however, hardly been achieved, with the consequence that structural uniformity and orientational order in tripodal SAMs are usually quite poor.
View Article and Find Full Text PDFEnergy-level alignment at organic-metal interfaces plays a crucial role for the performance of organic electronic devices. However, reliable models to predict energetics at strongly coupled interfaces are still lacking. We elucidate contact formation of 1,2,5,6,9,10-coronenehexone (COHON) to the (1 1 1)-surfaces of coinage metals by means of ultraviolet photoelectron spectroscopy, x-ray photoelectron spectroscopy, the x-ray standing wave technique, and density functional theory calculations.
View Article and Find Full Text PDF