Publications by authors named "Egbert Piasecki"

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. The pathogenesis of AD still remains unclear, including two main hypotheses: amyloid cascade and tau hyperphosphorylation. The hallmark neuropathological changes of AD are extracellular deposits of amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs).

View Article and Find Full Text PDF
SARS-CoV-2: Remarks on the COVID-19 Pandemic.

Arch Immunol Ther Exp (Warsz)

November 2020

The COVID-19 pandemic developing rapidly in 2020 is triggered by the emergence of a new human virus-SARS-CoV-2. The emergence of a new virus is not an unexpected phenomenon and has been predicted for many years. Since the virus has spread all over the world, it will be very difficult or even impossible to eradicate it.

View Article and Find Full Text PDF

Background: Oncolytic vesicular stomatitis virus (VSV) can be delivered intravenously to target primary and metastatic lesions, but the interaction between human peripheral blood leukocytes (PBLs) and VSV remains poorly understood. Our study aimed to assess the overall immunological consequences of ex vivo infection of PBLs with VSV.

Methods: Phenotypic analysis of lymphocyte subsets and apoptosis were evaluated with flow cytometry.

View Article and Find Full Text PDF

A reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with various mono and bisnucleophiles such as aminophenols, phenols, and amines have been studied as a convenient general route to a series of new antimicrobial and antiviral diphenyl diselenides. The compounds, particularly bis[2-(hydroxyphenylcarbamoyl)]phenyl diselenides and reference benzisoselenazol-3(2)-ones, exhibited high antimicrobial activity against Gram-positive bacterial species ( spp., spp.

View Article and Find Full Text PDF

Killer cell immunoglobulin-like receptors (KIR) are the most polymorphic receptors of natural killer (NK) cells. Their activity diversifies the functions of NK cells in the antiviral immune response, so the presence of certain KIR may affect transmission of HIV-1. The aim of the study was to evaluate the influence of KIR genes on the susceptibility to HIV-1 infection in the Polish population depending on the route of exposure.

View Article and Find Full Text PDF

The present study shows that an application of cyclophosphamide (CY) supported by dendritic cell (DC)-based vaccines affected differentiation of the activity of CD4+ T cell subpopulations accompanied by an alteration in CD8+ cell number. Vaccines were composed of bone marrow-derived DCs activated with tumor cell lysate (BM-DC/TAgTNF-α) and/or genetically modified DCs of JAWS II line (JAWS II/Neo or JAWS II/IL-2 cells). Compared to untreated or CY-treated mice, the combined treatment of MC38 colon carcinoma-bearing mice resulted in significant tumor growth inhibition associated with an increase in influx of CD4+ and CD8+ T cells into tumor tissue.

View Article and Find Full Text PDF

Natural killer cells play an important role as effectors of innate immunity and regulators of adaptive immunity. They are important elements of the innate response to viral infections, which they detect using human leukocyte antigen (HLA) class I-binding receptors. Most polymorphic of these are killer cell immunoglobulin-like receptors (KIRs) which exist as two basic isotypes, activating or inhibitory receptors and are encoded by genes distributed differently in unrelated individuals.

View Article and Find Full Text PDF

A hostile tumor microenvironment, characterized by an abundance of T regulatory cells and myeloid-derived suppressor cells (MDSCs), considerably limits the efficacy of dendritic cell (DC)-based vaccines. The intention of this study was to enhance the antitumor activity of vaccines consisting of bone marrow-derived DCs stimulated with TAg (BMDC/TAg) via single administration of cyclophosphamide and multiple injections of interleukin (IL)-12-transduced DCs (BMDC/IL-12). The combined chemoimmunotherapy was applied in the treatment of mice with subcutaneously (SC) growing, advanced MC38 colon carcinoma.

View Article and Find Full Text PDF

Background: The human genome contains about 8% of endogenous retroviral sequences originated from germ cell infections by exogenous retroviruses during evolution. Most of those sequences are inactive because of accumulation of mutations but some of them are still capable to be transcribed and translated. The latter are insertionally polymorphic HERV-K113 and HERV-K115.

View Article and Find Full Text PDF

Interleukin (IL-) 2 acts on a number of types of immune cells promoting their effector functions. To replace systemic administration of recombinant form of this cytokine, various genetically modified cells have been used indifferent preclinical models for tumor growth inhibition. In this study, dendritic or tumor cells transduced with retroviral vector carrying IL-2 gene (JAWS II/IL-2, X63/IL-2, MC38/IL-2 cells) alone or combined with tumor antigen-stimulated dendritic cells (JAWS II/TAg) were exploited to treat colon carcinoma MC38-bearing mice.

View Article and Find Full Text PDF

Effects of chemokine receptor alleles (CCR5-Δ32 and CCR2-64I) on susceptibility to human immunodeficiency virus (HIV) infection were studied in a Polish population. The CCR5 and CCR2 genotypes were determined for 311 healthy, HIV-negative individuals (control group), 121 exposed to HIV infection but uninfected (EU group), and 470 HIV-positive patients. The frequency of the alleles in the control group was calculated as 0.

View Article and Find Full Text PDF

The replication of vesicular stomatitis virus (VSV) in isolated human leukocytes has been used to measure the level of nonspecific antiviral immunity. However, during infection with some pathogens, the main effect observed is caused by interaction between the pathogen and VSV. This was also noted in advanced stages of HIV infection, when an inverse association between HIV viral load and VSV replication was found.

View Article and Find Full Text PDF

Various N-substituted benzisoselenazol-3(2H)-ones and their non-selenium-containing analogues have been synthesized and tested against selected viruses (HHV-1, EMCV and VSV) to determine the extent to which selenium plays a role in antiviral activity. The data presented here show that the presence of selenium is crucial for the antiviral properties of benzisoselenazol-3(2H)-ones since their isostructural analogues having different groups but lacking selenium either did not show any antiviral activity or their activity was substantially lower. The open-chain analogues of benzisoselenazol-3(2H)-ones--diselenides also exhibited high antiviral activity while selenides and disulfides were completely inactive towards model viruses.

View Article and Find Full Text PDF

Different N-substituted benzisoselenazol-3(2H)-ones, analogues of ebselen were designed as new antiviral and antimicrobial agents. We report their synthesis, chemical properties as well as study on biological activity against broad spectrum of pathogenic microorganisms (Staphylococcus aureus, Staphylococcus simulans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, Aspergillus niger) and viruses (herpes simplex virus type 1 (HSV-1), encephalomyocarditis virus (EMCV), vesicular stomatitis virus (VSV)), in vitro. Most of them exhibited high activity against viruses (HSV-1, EMCV) and gram-positive bacteria strains (S.

View Article and Find Full Text PDF